中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing

文献类型:期刊论文

作者Nune, K. C. ; Kumar, A. ; Misra, R. D. K. ; Li, S. J. ; Hao, Y. L. ; Yang, R.
刊名COLLOIDS AND SURFACES B-BIOINTERFACES
出版日期2017-02-01
卷号150页码:78-88
ISSN号0927-7765
关键词Gradient mesh structure Ti6Al4V Osteoblasts
通讯作者Misra, RDK (reprint author), Univ Texas El Paso, Biomat & Biomed Engn Res Lab, Dept Met Mat & Biomed Engn, 500 W Univ Ave, El Paso, TX 79968 USA.
中文摘要We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. (C) 2016 Elsevier B.V. All rights reserved.
学科主题Biophysics ; Chemistry, Physical ; Materials Science, Biomaterials
资助信息National Basic Research Program of China [2012CB933902]; Materials Science and Biomedical Engineering programs of the Department of Metallurgical, Materials, and Biomedical Engineering; Chinese MoST [2015AA033702, 2016YFC1102601]
收录类别SCI
语种英语
公开日期2017-08-17
源URL[http://ir.imr.ac.cn/handle/321006/78321]  
专题金属研究所_中国科学院金属研究所
推荐引用方式
GB/T 7714
Nune, K. C.,Kumar, A.,Misra, R. D. K.,et al. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing[J]. COLLOIDS AND SURFACES B-BIOINTERFACES,2017,150:78-88.
APA Nune, K. C.,Kumar, A.,Misra, R. D. K.,Li, S. J.,Hao, Y. L.,&Yang, R..(2017).Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.COLLOIDS AND SURFACES B-BIOINTERFACES,150,78-88.
MLA Nune, K. C.,et al."Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing".COLLOIDS AND SURFACES B-BIOINTERFACES 150(2017):78-88.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。