中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors

文献类型:期刊论文

作者Zheng, Shuanghao1,2,4; Li, Zhilin3,4; Wu, Zhong-Shuai1; Dong, Yanfeng1; Zhou, Feng1; Wang, Sen1,4; Fu, Qiang1,2; Sun, Chenglin1; Guo, Liwei3; Bao, Xinhe1,2
刊名ACS NANO
出版日期2017-04-01
卷号11期号:4页码:4009-4016
关键词vertically aligned graphene high power micro-supercapacitors on-chip energy storage electrochemical capacitors
英文摘要Interfacial integration of a shape-engineered electrode with a strongly bonded current collector is the key for minimizing both ionic and electronic resistance and then developing high-power supercapacitors. Herein, we demonstrated the construction of high power micro-supercapacitors (VG-MSCs) based on high-density unidirectional arrays of vertically aligned graphene (VG) nanosheets, derived from a thermally decomposed SiC substrate. The as-grown VG arrays showed a standing basal plane orientation grown on a (000 (1) over bar) SiC substrate, tailored thickness (3.5-28 mu m), high-density structurally ordering alignment of graphene consisting of 1-5 layers, vertically oriented edges, open intersheet channels, high electrical conductivity (192 S cm(-1)), and strong bonding of the VG edges to the SiC substrate. As a result, the demonstrated VG-MSCs displayed a high areal capacitance of similar to 7.3 mF cm(-2) and a fast frequency response with a short time constant of 9 ms. Furthermore, VG-MSCs in both an aqueous polymer gel electrolyte and nonaqueous ionic liquid of 1-ethyl-3-methylimidazolium tetrafluoroborate operated well at high scan rates of up to 200 V s(-1). More importantly, VG-MSCs offered a high power density of similar to 15 W cm(-3) in gel electrolyte and similar to 61 W cm(-3) in ionic liquid. Therefore, this strategy of producing high-density unidirectional VG nanosheets directly bonded on a SiC current collector demonstrated the feasibility of manufacturing high-power compact supercapacitors.
WOS标题词Science & Technology ; Physical Sciences ; Technology
类目[WOS]Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
研究领域[WOS]Chemistry ; Science & Technology - Other Topics ; Materials Science
关键词[WOS]HIGH VOLUMETRIC CAPACITANCE ; WALLED CARBON NANOTUBES ; DOUBLE-LAYER CAPACITORS ; HIGH-PERFORMANCE ; ELECTROCHEMICAL CAPACITORS ; ON-CHIP ; ORIENTED GRAPHENES ; SILICON NANOWIRES ; ENERGY-STORAGE ; FILMS
收录类别SCI
语种英语
WOS记录号WOS:000400233200061
源URL[http://cas-ir.dicp.ac.cn/handle/321008/151962]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
作者单位1.Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China
2.Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, 457 Zhongshan Rd, Dalian 116023, Peoples R China
3.Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Res & Dev Ctr Funct Crystals, POB 603, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Shuanghao,Li, Zhilin,Wu, Zhong-Shuai,et al. High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors[J]. ACS NANO,2017,11(4):4009-4016.
APA Zheng, Shuanghao.,Li, Zhilin.,Wu, Zhong-Shuai.,Dong, Yanfeng.,Zhou, Feng.,...&Bao, Xinhe.(2017).High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors.ACS NANO,11(4),4009-4016.
MLA Zheng, Shuanghao,et al."High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors".ACS NANO 11.4(2017):4009-4016.

入库方式: OAI收割

来源:大连化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。