Probability Distribution Evolution Algorithm to Inertial Parameters Identification for Space Target
文献类型:会议论文
作者 | Feng GH; Li WH(李文皓)![]() ![]() ![]() |
出版日期 | 2017 |
会议日期 | NOV 11-13, 2017 |
会议地点 | Hangzhou, PEOPLES R CHINA |
关键词 | Probability Distribution Evolution Algorithm (Pde) Inertial Parameters Identification Space Target Pseudo-inverse Solution Consistency |
英文摘要 | A new probability distribution evolution algorithm (PDE) is proposed for inertial parameters identification of space target. Based on the conservation of angular momentum, the number of space target's inertial unknown parameters is reduced from 10 to 4 by using pseudo inverse operation. The pseudo-inverse solution consistency in multiple groups status is proposed as the optimization evaluation index, and identification simulations are carried out using PDE. A evaluation strategy is given to significantly improve identification accuracy while a small increase of calculation consumption. The statistical results of identification simulation examples show that by only using angular momentum measurement data, the proposed PDE and strategy can achieve the high precision identification for the target inertial parameters with large range change. And PDE is equivalent to the optimization ability of typical evolutionary algorithms, such as genetic algorithm (GE) and differential evolution algorithm (DE). |
资助机构 | This research was supported by the National Natural Science Foundation of China [grant number 11702294, 11002143] ; and the Key Project of Chinese National Programs for Fundamental Research and Development, 973 program [grant number 2013CB733000]. |
会议录 | 2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI)
![]() |
语种 | 英语 |
ISBN号 | 978-1-5386-1107-4 |
WOS记录号 | WOS:000427752100010 |
源URL | [http://dspace.imech.ac.cn/handle/311007/75551] ![]() |
专题 | 力学研究所_先进制造工艺力学重点实验室 |
通讯作者 | Li WH(李文皓) |
推荐引用方式 GB/T 7714 | Feng GH,Li WH,Zhang H,et al. Probability Distribution Evolution Algorithm to Inertial Parameters Identification for Space Target[C]. 见:. Hangzhou, PEOPLES R CHINA. NOV 11-13, 2017. |
入库方式: OAI收割
来源:力学研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。