中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Artificial Neural Networks for Data Analysis of Magnetic Measurements on East

文献类型:期刊论文

作者Wang, Bo1; Xiao, Bingjia1,2; Li, Jiangang1,2; Guo, Yong2; Luo, Zhengping2
刊名JOURNAL OF FUSION ENERGY
出版日期2016-04-01
卷号35期号:2页码:390-400
关键词Neural Networks Plasma Equilibrium Data Analysis
DOI10.1007/s10894-015-0044-z
文献子类Article
英文摘要The problem of the reconstruction of the parameters characterizing the plasma shape in a tokamak device is of paramount importance both for present day experiments and for future reactor. The plasma shape can only be evaluated by diagnostic data, such as poloidal flux and magnetic field measured respectively by the flux loops and magnetic probes located on the vacuum vessel outside the plasma. The aim of the present paper is to take a step forward in the application of the neural network approach for the identification of non-circular plasma equilibrium and data analysis for the problem of the optimal location of a limited number of magnetic sensors. We have adopted a machine learning method, back-propagation neural network, to analyze the magnetic diagnostic data. The database has been generated by means of a specially adapted version of an MHD equilibrium code EFIT with reference to the EAST geometry and stored in the EAST mdsplus database. The network uses external magnetic measurements as input data and the selected plasma parameters as output data to train and test. Then a novel strategy is implemented for the selection of the optimum location of a limited number of magnetic probes based data analysis of the network. The average accuracy of the identification procedure is quite good (e.g., the maximum relative error is 0.260 % of internal inductance), with a contrast of the computation results of EFIT as desired output. It has been shown that the degradation of the performance is rather small (e.g., RMS error of minor radius vary from 4.307 to 4.765 %) when the number of magnetic probes is reduced by nearly half.
WOS关键词STOCHASTIC-CONTROL ; TOKAMAK
WOS研究方向Nuclear Science & Technology
语种英语
WOS记录号WOS:000371623500039
资助机构National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Magnetic Confinement Fusion Research Program of China(2014GB103000) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216) ; National Natural Science Foundation of China(11305216)
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/21680]  
专题合肥物质科学研究院_中科院等离子体物理研究所
作者单位1.Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China
2.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Wang, Bo,Xiao, Bingjia,Li, Jiangang,et al. Artificial Neural Networks for Data Analysis of Magnetic Measurements on East[J]. JOURNAL OF FUSION ENERGY,2016,35(2):390-400.
APA Wang, Bo,Xiao, Bingjia,Li, Jiangang,Guo, Yong,&Luo, Zhengping.(2016).Artificial Neural Networks for Data Analysis of Magnetic Measurements on East.JOURNAL OF FUSION ENERGY,35(2),390-400.
MLA Wang, Bo,et al."Artificial Neural Networks for Data Analysis of Magnetic Measurements on East".JOURNAL OF FUSION ENERGY 35.2(2016):390-400.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。