Experimental investigation of hypervapotron heat transfer enhancement with alumina-water nanofluids
文献类型:期刊论文
作者 | Pan, Baoguo1; Wang, Weihua1,2; Chu, Delin1; Mei, Luoqin1; Zhang, Qianghua1 |
刊名 | INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
![]() |
出版日期 | 2016-07-01 |
卷号 | 98期号:无页码:738-745 |
关键词 | Alumina-water Nanofluids Hypervapotron Heat Transfer Performance High Heat Flux Plasma Facing Components |
DOI | 10.1016/j.ijheatmasstransfer.2016.03.089 |
文献子类 | Article |
英文摘要 | In order to meet the cooling needs of high heat flux (HHF) internal plasma facing components (PFC) of fusion reactor, experimental investigations of hypervapotron (HV) heat transfer enhancement with the alumina-water nanofluids were carried out. Pressure water hypervapotron loop-II (PWHL-II) has been constructed to implement the high heat flux HV heat transfer correlative experiments for PFC. The triangular fins in HV test section of chromium-zirconium-copper alloy were processed similar to the International Thermonuclear Experimental Reactor like (ITER-like) divertor targets and the Neutral Beam Injector (NBI) cooling components. 200 KW high frequency induction heating equipment was developed to use as the power source of HHF. Alumina-water nanofluids of four different mass fractions were prepared by ultrasonic dispersion technology. The experiments of heat transfer enhancement measurement have been completed. Real-time temperature data of the four specified positions at the root of HV fins were acquired by the temperature sensors and used to analyze the heat transfer performance enhancement under each of the corresponding conditions. Experimental results show that the HV heat transfer performance enhancement with the mass fraction 0.01% alumina-water nanofluids is better than that of the mass fraction of 0.005%, 0.05% and 0.10% alumina-water nanofluids as well as deionized water under HHF and different flow velocities. In the cases of high flow velocity at different heat flux, the heat transfer enhancement of the 0.01% alumina-water nanofluids in HV increases by 17% on average and 31% at most in comparison with deionized water. In the case of HHF, the heat transfer enhancement of the 0.01% alumina-water nanofluids in HV increases by 21% on average and 30% at most in comparison with deionized water. The results in question can function as a reference for design optimization and improvements of the ITER-like devices' water cooling structure of the HHF plasma facing components for future fusion reactors. (C) 2016 Elsevier Ltd. All rights reserved. |
WOS关键词 | ITER 1ST WALL ; FLUX TEST FACILITY ; THERMAL-CONDUCTIVITY ; CFD ANALYSIS ; TEMPERATURE ; COMPONENTS ; DESIGN |
WOS研究方向 | Thermodynamics ; Engineering ; Mechanics |
语种 | 英语 |
WOS记录号 | WOS:000375360600069 |
资助机构 | National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Magnetic Confinement Fusion Science Program of China(2013GB113004 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; National Natural Science Foundation of China(91326101 ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 2015GB130006) ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 51576208 ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) ; 11505290) |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/21762] ![]() |
专题 | 合肥物质科学研究院_中科院等离子体物理研究所 |
作者单位 | 1.AOA, Inst Appl Phys, POB 051,451 Huangshan Rd, Hefei 230031, Anhui, Peoples R China 2.Chinese Acad Sci, Inst Plasma Phys, 350 Shushan Lake Rd, Hefei 230031, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | Pan, Baoguo,Wang, Weihua,Chu, Delin,et al. Experimental investigation of hypervapotron heat transfer enhancement with alumina-water nanofluids[J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2016,98(无):738-745. |
APA | Pan, Baoguo,Wang, Weihua,Chu, Delin,Mei, Luoqin,&Zhang, Qianghua.(2016).Experimental investigation of hypervapotron heat transfer enhancement with alumina-water nanofluids.INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,98(无),738-745. |
MLA | Pan, Baoguo,et al."Experimental investigation of hypervapotron heat transfer enhancement with alumina-water nanofluids".INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 98.无(2016):738-745. |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。