中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads

文献类型:期刊论文

作者Yuan, Y.1; Du, J.2; Wirtz, M.2; Luo, G. -N.3; Lu, G. -H.1; Liu, W.4
刊名NUCLEAR FUSION
出版日期2016-03-01
卷号56期号:3页码:036021
关键词Tungsten Surface Damage Structure Evolution Transient Heat Loads
DOI10.1088/0029-5515/56/3/036021
文献子类Article
英文摘要Surface damage and structure evolution of the full tungsten ITER divertor under transient heat loads is a key concern for component lifetime and plasma operations. Recrystallization caused by transients and steady-state heat loads can lead to degradation of the material properties and is therefore one of the most serious issues for tungsten armor. In order to investigate the thermal response of the recrystallized tungsten under edge localized mode-like transient thermal loads, fully recrystallized tungsten samples with different average grain sizes are exposed to cyclic thermal shocks in the electron beam facility JUDITH 1. The results indicate that not only does the microstructure change due to recrystallization, but that the surface residual stress induced by mechanical polishing strongly influences the surface cracking behavior. The stress-free surface prepared by electro-polishing is shown to be more resistant to cracking than the mechanically polished one. The resulting surface roughness depends largely on the loading conditions instead of the recrystallized-grain size. As the base temperature increases from room temperature to 400 degrees C, surface roughening mainly due to the shear bands in each grain becomes more pronounced, and sub-grains (up to 3 mu m) are simultaneously formed in the sub-surface. The directions of the shear bands exhibit strong grain-orientation dependence, and they are generally aligned with the traces of {1 1 2} twin habit planes. The results suggest that twinning deformation and dynamic recrystallization represent the predominant mechanism for surface roughening and related microstructure evolution.
WOS关键词ELECTRON BACKSCATTER DIFFRACTION ; ROD BALLISTIC PENETRATORS ; DYNAMIC RECRYSTALLIZATION ; SHEAR BANDS ; DEFORMATION ; TANTALUM ; ORIENTATION ; BEHAVIOR ; ISSUES ; TWINS
WOS研究方向Physics
语种英语
WOS记录号WOS:000373378200022
资助机构National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Magnetic Confinement Fusion Science Program of China(2013GB109004) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012) ; National Nature Science Foundation of China(51401012)
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/21937]  
专题合肥物质科学研究院_中科院等离子体物理研究所
作者单位1.Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China
2.Forschungszentrum Julich, Inst Energie & Klimaforsch, D-52425 Julich, Germany
3.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
4.Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Y.,Du, J.,Wirtz, M.,et al. Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads[J]. NUCLEAR FUSION,2016,56(3):036021.
APA Yuan, Y.,Du, J.,Wirtz, M.,Luo, G. -N.,Lu, G. -H.,&Liu, W..(2016).Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads.NUCLEAR FUSION,56(3),036021.
MLA Yuan, Y.,et al."Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads".NUCLEAR FUSION 56.3(2016):036021.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。