The study of heat flux for disruption on experimental advanced superconducting tokamak
文献类型:期刊论文
作者 | Yang, Zhendong1,2; Fang, Jianan1; Gong, Xianzu2![]() ![]() ![]() |
刊名 | PHYSICS OF PLASMAS
![]() |
出版日期 | 2016-05-01 |
卷号 | 23期号:5页码:052502 |
DOI | 10.1063/1.4948494 |
文献子类 | Article |
英文摘要 | Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR(sep) = -2 cm, while it changes to upper single null (dR(sep) = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m(2). Published by AIP Publishing. |
WOS关键词 | POWER LOAD |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000378427900038 |
资助机构 | National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; National Magnetic Confinement Fusion Science Program of China(2014GB101002 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2013GB102001 ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) ; 2015GB102001) |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/21964] ![]() |
专题 | 合肥物质科学研究院_中科院等离子体物理研究所 |
作者单位 | 1.Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China 2.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Zhendong,Fang, Jianan,Gong, Xianzu,et al. The study of heat flux for disruption on experimental advanced superconducting tokamak[J]. PHYSICS OF PLASMAS,2016,23(5):052502. |
APA | Yang, Zhendong.,Fang, Jianan.,Gong, Xianzu.,Gan, Kaifu.,Luo, Jiarong.,...&Chen, Meiwen.(2016).The study of heat flux for disruption on experimental advanced superconducting tokamak.PHYSICS OF PLASMAS,23(5),052502. |
MLA | Yang, Zhendong,et al."The study of heat flux for disruption on experimental advanced superconducting tokamak".PHYSICS OF PLASMAS 23.5(2016):052502. |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。