中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Scenario development for high beta(p) low torque plasma with q(min) above 2 and large-radius internal transport barrier in DIII-D

文献类型:期刊论文

作者Ding, S.1; Xu, G. S.1; Wang, Q.2; Solomon, W. M.3; Zhao, Y.4; Gong, X.1; Garofalo, A. M.3; Holcomb, C. T.5; McKee, G.6; Yan, Z.6
刊名NUCLEAR FUSION
出版日期2017-02-01
卷号57期号:2页码:1-12
关键词Internal Transport Barrie High Poloidal Beta Low Torque High Minimum Safty Factor
DOI10.1088/0029-5515/57/2/022016
文献子类Article
英文摘要A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high beta(p), high q(min) regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I-p = 0.8 MA) and significantly higher normalized fusion performance (G= H-89 beta(N)/q(95)(2)= 0.16). The experiment aims at exploring high performance scenario with q(min)> 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H-89 = 3.5 or H-98,(y2) = 2.1 with beta(N) similar to 3.0, has been achieved transiently in this experiment together with q(min)> 2 and reduced NBI torque (3 similar to 5 N m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I-p = 0.8 MA at large minor radius (normalized rho similar to 0.7) in all channels (n(e), T-e, T-i, V-phi, especially strong in the T-e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. In an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash.
WOS关键词REVERSED SHEAR PLASMAS ; JT-60U ; JET
WOS研究方向Physics
语种英语
WOS记录号WOS:000385668200015
资助机构National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Natual Science Foundation of China(11575248 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 11305209) ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000) ; 2015GB101000)
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/30808]  
专题合肥物质科学研究院_中科院等离子体物理研究所
作者单位1.Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China
2.Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China
3.Gen Atom, POB 85608, San Diego, CA 92186 USA
4.Soochow Univ, Suzhou 215006, Jiangsu, Peoples R China
5.Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
6.Univ Wisconsin, Madison, WI 53706 USA
7.Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
推荐引用方式
GB/T 7714
Ding, S.,Xu, G. S.,Wang, Q.,et al. Scenario development for high beta(p) low torque plasma with q(min) above 2 and large-radius internal transport barrier in DIII-D[J]. NUCLEAR FUSION,2017,57(2):1-12.
APA Ding, S..,Xu, G. S..,Wang, Q..,Solomon, W. M..,Zhao, Y..,...&Wan, B. N..(2017).Scenario development for high beta(p) low torque plasma with q(min) above 2 and large-radius internal transport barrier in DIII-D.NUCLEAR FUSION,57(2),1-12.
MLA Ding, S.,et al."Scenario development for high beta(p) low torque plasma with q(min) above 2 and large-radius internal transport barrier in DIII-D".NUCLEAR FUSION 57.2(2017):1-12.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。