中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

文献类型:期刊论文

作者Garofalo, A. M.1; Gong, X. Z.2; Qian, J.2; Chen, J.2; Li, G.2; Li, K.2; Li, M. H.2; Zhai, X.2; Bonoli, P.3; Brower, D.4
刊名NUCLEAR FUSION
出版日期2017-07-01
卷号57期号:7页码:1-9
关键词Magnetic Fusion Steady-state Tokamak Current Profile Control Lower Hybrid
DOI10.1088/1741-4326/aa7186
文献子类Article
英文摘要Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H-98y2 similar to 1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drive (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.
WOS关键词NUCLEAR-SCIENCE FACILITY ; TRANSPORT ; TOKAMAK ; JET
WOS研究方向Physics
语种英语
WOS记录号WOS:000403320400001
资助机构US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; DE-SC0010685 ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-SC-0010492 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-FG02-01ER54615 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC02-09CH11466 ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344) ; DE-AC52-07NA27344)
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/31875]  
专题合肥物质科学研究院_中科院等离子体物理研究所
作者单位1.Gen Atom, San Diego, CA 92186 USA
2.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
3.MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
4.Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
5.Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
6.Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
7.Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA
8.CEA, IRFM, F-13108 St Paul Les Durance, France
推荐引用方式
GB/T 7714
Garofalo, A. M.,Gong, X. Z.,Qian, J.,et al. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST[J]. NUCLEAR FUSION,2017,57(7):1-9.
APA Garofalo, A. M..,Gong, X. Z..,Qian, J..,Chen, J..,Li, G..,...&Wan, B..(2017).Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST.NUCLEAR FUSION,57(7),1-9.
MLA Garofalo, A. M.,et al."Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST".NUCLEAR FUSION 57.7(2017):1-9.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。