Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST
文献类型:期刊论文
作者 | Ding, S.1; Garofalo, A. M.2; Qian, J.1; Cui, L.3; McClenaghan, J. T.4; Pan, C.1; Chen, J.1; Zhai, X.1; McKee, G.5; Ren, Q.1 |
刊名 | PHYSICS OF PLASMAS
![]() |
出版日期 | 2017-05-01 |
卷号 | 24期号:5页码:1-11 |
DOI | 10.1063/1.4982058 |
文献子类 | Article |
英文摘要 | Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high beta(p) plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high beta(p) regime, is maintained when the scenario is extended from q(95) similar to 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E x B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a beta(p) threshold for large-radius ITB formation in the high beta(p) scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a bN scan and the other for a q(95) scan. They both give the same beta(p) threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing beta(p) is consistent with transport modeling. The progress toward the high beta(p) scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high beta(p) scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high beta(p) regime can be extended to a lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices. Published by AIP Publishing. |
WOS关键词 | INTERNAL TRANSPORT BARRIERS ; REVERSED SHEAR PLASMAS ; TOKAMAK ; PARAMETERS ; JT-60U |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000400817900131 |
资助机构 | National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Natural Science Foundation of China(11575248 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; National Magnetic Confinement Fusion Science Program of China(2015GB103001 ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; Youth Innovation Promotion Association Chinese Academy of Sciences(2016384) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; U.S. Department of Energy Office of Sciences(DE-FC02-04ER54698) ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 11305209 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 2015GB102004 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 11575246 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 2015GB101000 ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 11575249) ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110001 ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) ; 2015GB110005) |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/31899] ![]() |
专题 | 合肥物质科学研究院_中科院等离子体物理研究所 |
作者单位 | 1.Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China 2.Gen Atom Co, POB 85608, San Diego, CA 92186 USA 3.Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA 4.Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA 5.Univ Wisconsin, Madison, WI 53706 USA 6.Lawrence Livermore Natl Lab, Livermore, CA 94551 USA |
推荐引用方式 GB/T 7714 | Ding, S.,Garofalo, A. M.,Qian, J.,et al. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST[J]. PHYSICS OF PLASMAS,2017,24(5):1-11. |
APA | Ding, S..,Garofalo, A. M..,Qian, J..,Cui, L..,McClenaghan, J. T..,...&Wan, B..(2017).Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST.PHYSICS OF PLASMAS,24(5),1-11. |
MLA | Ding, S.,et al."Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST".PHYSICS OF PLASMAS 24.5(2017):1-11. |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。