中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5

文献类型:期刊论文

作者Kan, X. C.1,2; Zu, L.1,2; Wang, B. S.1; Lin, S.1; Wang, X. F.1,2; Tong, P.1; Song, W. H.1; Sun, Y. P.1,3,4
刊名JOURNAL OF ALLOYS AND COMPOUNDS
出版日期2017-02-05
卷号693期号:页码:895-901
关键词Magnetocaloric Antiperovskite Phase Diagram Magnetoresistance
DOI10.1016/j.jallcom.2016.09.241
文献子类Article
英文摘要Effects of Co doping on the crystal structure, magnetic, electrical transport properties, and magnetocaloric effect (MCE) of antiperovskite ZnCFe3-xCox (0 <= x <= 3) were investigated. The value of lattice constant decreases with increasing x. The Curie temperature (T-C) decreases from 358 K in ZnCFe3 to 5 K in ZnCCo3 and the saturated magnetization declines monotonously. The reduced ferromagnetic state is explained by the band filling effect resulted from the Co substitution. For x >= 2.3, the negative magnetoresistance (MR) below T-C starts to increase as x or magnetic field increases, reaching - 16% for x = 2.9 under H = 45 kOe, which is three times larger than that of GaCMn3 at 250 K. MCE was investigated for selected compositions. The temperature range of MCE is tuned covering 5-350 K as a function of Co-level. Although the maximal entropy change decreases a little with increasing x, the refrigeration ranges across room temperature. At the optimal composition x - 0.5, T-C is 312 K with a magnetic entropy change of 2.09 J/kg K and relative cooling power (RCP) of 283 J/kg (Delta H = 45 kOe), make it a room-temperature MCE candidate. (C) 2016 Elsevier B.V. All rights reserved.
WOS关键词REFRIGERATION ; RESISTIVITY ; FRUSTRATION
WOS研究方向Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000388610400113
资助机构National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109)
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/30242]  
专题合肥物质科学研究院_中科院固体物理研究所
作者单位1.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
2.Univ Sci & Technol China, Hefei 230026, Peoples R China
3.Chinese Acad Sci, High Field Magnet Lab, Hefei 230031, Peoples R China
4.Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Kan, X. C.,Zu, L.,Wang, B. S.,et al. Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2017,693(无):895-901.
APA Kan, X. C..,Zu, L..,Wang, B. S..,Lin, S..,Wang, X. F..,...&Sun, Y. P..(2017).Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5.JOURNAL OF ALLOYS AND COMPOUNDS,693(无),895-901.
MLA Kan, X. C.,et al."Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5".JOURNAL OF ALLOYS AND COMPOUNDS 693.无(2017):895-901.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。