Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5
文献类型:期刊论文
作者 | Kan, X. C.1,2; Zu, L.1,2; Wang, B. S.1; Lin, S.1![]() ![]() |
刊名 | JOURNAL OF ALLOYS AND COMPOUNDS
![]() |
出版日期 | 2017-02-05 |
卷号 | 693期号:无页码:895-901 |
关键词 | Magnetocaloric Antiperovskite Phase Diagram Magnetoresistance |
DOI | 10.1016/j.jallcom.2016.09.241 |
文献子类 | Article |
英文摘要 | Effects of Co doping on the crystal structure, magnetic, electrical transport properties, and magnetocaloric effect (MCE) of antiperovskite ZnCFe3-xCox (0 <= x <= 3) were investigated. The value of lattice constant decreases with increasing x. The Curie temperature (T-C) decreases from 358 K in ZnCFe3 to 5 K in ZnCCo3 and the saturated magnetization declines monotonously. The reduced ferromagnetic state is explained by the band filling effect resulted from the Co substitution. For x >= 2.3, the negative magnetoresistance (MR) below T-C starts to increase as x or magnetic field increases, reaching - 16% for x = 2.9 under H = 45 kOe, which is three times larger than that of GaCMn3 at 250 K. MCE was investigated for selected compositions. The temperature range of MCE is tuned covering 5-350 K as a function of Co-level. Although the maximal entropy change decreases a little with increasing x, the refrigeration ranges across room temperature. At the optimal composition x - 0.5, T-C is 312 K with a magnetic entropy change of 2.09 J/kg K and relative cooling power (RCP) of 283 J/kg (Delta H = 45 kOe), make it a room-temperature MCE candidate. (C) 2016 Elsevier B.V. All rights reserved. |
WOS关键词 | REFRIGERATION ; RESISTIVITY ; FRUSTRATION |
WOS研究方向 | Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering |
语种 | 英语 |
WOS记录号 | WOS:000388610400113 |
资助机构 | National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Key Basic Research(2011CBA00111) ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; National Natural Science Foundation of China(51001094 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51371005 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 51171177 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174288 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 11174295 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301167 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 51301165 ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) ; 91222109) |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/30242] ![]() |
专题 | 合肥物质科学研究院_中科院固体物理研究所 |
作者单位 | 1.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China 2.Univ Sci & Technol China, Hefei 230026, Peoples R China 3.Chinese Acad Sci, High Field Magnet Lab, Hefei 230031, Peoples R China 4.Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 | Kan, X. C.,Zu, L.,Wang, B. S.,et al. Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2017,693(无):895-901. |
APA | Kan, X. C..,Zu, L..,Wang, B. S..,Lin, S..,Wang, X. F..,...&Sun, Y. P..(2017).Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5.JOURNAL OF ALLOYS AND COMPOUNDS,693(无),895-901. |
MLA | Kan, X. C.,et al."Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 <= x <= 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5".JOURNAL OF ALLOYS AND COMPOUNDS 693.无(2017):895-901. |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。