Representative Vector Machines: A Unified Framework for Classical Classifiers
文献类型:期刊论文
作者 | Gui, Jie1,2; Liu, Tongliang3,4; Tao, Dacheng3,4; Sun, Zhenan2; Tan, Tieniu2 |
刊名 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
出版日期 | 2016-08-01 |
卷号 | 46期号:8页码:1877-1888 |
关键词 | Discriminant Vector Machine (Dvm) Pattern Classification Representative Vector Machines (Rvms) Sparse Representation Support Vector Machines (Svms) |
DOI | 10.1109/TCYB.2015.2457234 |
文献子类 | Article |
英文摘要 | Classifier design is a fundamental problem in pattern recognition. A variety of pattern classification methods such as the nearest neighbor (NN) classifier, support vector machine (SVM), and sparse representation-based classification (SRC) have been proposed in the literature. These typical and widely used classifiers were originally developed from different theory or application motivations and they are conventionally treated as independent and specific solutions for pattern classification. This paper proposes a novel pattern classification framework, namely, representative vector machines (or RVMs for short). The basic idea of RVMs is to assign the class label of a test example according to its nearest representative vector. The contributions of RVMs are twofold. On one hand, the proposed RVMs establish a unified framework of classical classifiers because NN, SVM, and SRC can be interpreted as the special cases of RVMs with different definitions of representative vectors. Thus, the underlying relationship among a number of classical classifiers is revealed for better understanding of pattern classification. On the other hand, novel and advanced classifiers are inspired in the framework of RVMs. For example, a robust pattern classification method called discriminant vector machine (DVM) is motivated from RVMs. Given a test example, DVM first finds its k-NNs and then performs classification based on the robust M-estimator and manifold regularization. Extensive experimental evaluations on a variety of visual recognition tasks such as face recognition (Yale and face recognition grand challenge databases), object categorization (Caltech-101 dataset), and action recognition (Action Similarity LAbeliNg) demonstrate the advantages of DVM over other classifiers. |
WOS关键词 | EXTREME LEARNING-MACHINE ; FEATURE LINE METHOD ; FACE RECOGNITION ; IMAGE CLASSIFICATION ; PATTERN-CLASSIFICATION ; SPARSE REPRESENTATION |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000379984500015 |
资助机构 | National Basic Research Program of China(2012CB316300) ; National Basic Research Program of China(2012CB316300) ; National Basic Research Program of China(2012CB316300) ; National Basic Research Program of China(2012CB316300) ; National Science Foundation of China(61420106015 ; National Science Foundation of China(61420106015 ; National Science Foundation of China(61420106015 ; National Science Foundation of China(61420106015 ; Post-Doctoral Science Foundation of China(2012M520021 ; Post-Doctoral Science Foundation of China(2012M520021 ; Post-Doctoral Science Foundation of China(2012M520021 ; Post-Doctoral Science Foundation of China(2012M520021 ; Australian Research Council(FT-130101457 ; Australian Research Council(FT-130101457 ; Australian Research Council(FT-130101457 ; Australian Research Council(FT-130101457 ; 61135002 ; 61135002 ; 61135002 ; 61135002 ; 2013T60195) ; 2013T60195) ; 2013T60195) ; 2013T60195) ; LP-140100569) ; LP-140100569) ; LP-140100569) ; LP-140100569) ; 61272333 ; 61272333 ; 61272333 ; 61272333 ; 61572463 ; 61572463 ; 61572463 ; 61572463 ; 61273272) ; 61273272) ; 61273272) ; 61273272) ; National Basic Research Program of China(2012CB316300) ; National Basic Research Program of China(2012CB316300) ; National Basic Research Program of China(2012CB316300) ; National Basic Research Program of China(2012CB316300) ; National Science Foundation of China(61420106015 ; National Science Foundation of China(61420106015 ; National Science Foundation of China(61420106015 ; National Science Foundation of China(61420106015 ; Post-Doctoral Science Foundation of China(2012M520021 ; Post-Doctoral Science Foundation of China(2012M520021 ; Post-Doctoral Science Foundation of China(2012M520021 ; Post-Doctoral Science Foundation of China(2012M520021 ; Australian Research Council(FT-130101457 ; Australian Research Council(FT-130101457 ; Australian Research Council(FT-130101457 ; Australian Research Council(FT-130101457 ; 61135002 ; 61135002 ; 61135002 ; 61135002 ; 2013T60195) ; 2013T60195) ; 2013T60195) ; 2013T60195) ; LP-140100569) ; LP-140100569) ; LP-140100569) ; LP-140100569) ; 61272333 ; 61272333 ; 61272333 ; 61272333 ; 61572463 ; 61572463 ; 61572463 ; 61572463 ; 61273272) ; 61273272) ; 61273272) ; 61273272) |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/30849] ![]() |
专题 | 合肥物质科学研究院_中科院合肥智能机械研究所 |
作者单位 | 1.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Peoples R China 2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China 3.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia 4.Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia |
推荐引用方式 GB/T 7714 | Gui, Jie,Liu, Tongliang,Tao, Dacheng,et al. Representative Vector Machines: A Unified Framework for Classical Classifiers[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(8):1877-1888. |
APA | Gui, Jie,Liu, Tongliang,Tao, Dacheng,Sun, Zhenan,&Tan, Tieniu.(2016).Representative Vector Machines: A Unified Framework for Classical Classifiers.IEEE TRANSACTIONS ON CYBERNETICS,46(8),1877-1888. |
MLA | Gui, Jie,et al."Representative Vector Machines: A Unified Framework for Classical Classifiers".IEEE TRANSACTIONS ON CYBERNETICS 46.8(2016):1877-1888. |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。