中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices

文献类型:期刊论文

作者Wang, Y. K.1,2; Miao, S.1,2; Xie, Z. M.1,2; Liu, R.1; Zhang, T.1; Fang, Q. F.1,2; Hao, T.1; Wang, X. P.1; Liu, C. S.1; Liu, X.3
刊名JOURNAL OF NUCLEAR MATERIALS
出版日期2017-08-01
卷号492页码:260-268
关键词W-hfc Alloys Swaging Thermal Stability Thermal Conductivity
DOI10.1016/j.jnucmat.2017.05.038
文献子类Article
英文摘要HfC dispersion strengthened tungsten alloys were prepared by the spark plasma sintering (SPS) and an ordinary sintering followed by swaging, respectively. The HfC content is optimized as 0.5 we6 through spark plasma sintering (SPS) processing. The thermal stability, thermal conductivity and mechanical properties of swaged W-0.5 wt%HfC (WHC05) alloys were systematically investigated. Grain of swaged WHCO5 has an obvious round bar shaped morphology with an average diameter of 24.5 gm and an average length of 187 mu m, respectively, which keeps stability with increasing annealing temperature up to 1400 degrees C. The ductile-brittle transition temperature of swaged WHCO5 is about 250 degrees C, much lower than that of SPSed WHCO5 samples (similar to 500 degrees C). The ultimate tensile strength of swaged WHCO5 alloys annealed at 1200 degrees C has no significant drops in a wide tested temperature range from 300 degrees C to 800 degrees C. The thermal conductivity of swaged WHCO5 annealed at 1200 degrees C is up to 174 W/m.K at room temperature and always larger than 137 W/m.K from RT to 500 degrees C, which is much higher than that of the unannealed one and just the same with ITER grade W. (C) 2017 Elsevier B.V. All rights reserved.
WOS关键词DIFFERENT SINTERING TECHNIQUES ; HELIUM-COOLED DIVERTOR ; HAFNIUM CARBIDE ; SPARK PLASMA ; TUNGSTEN-RHENIUM ; MICROSTRUCTURE ; COMPOSITES ; CONDUCTIVITY ; W-Y2O3
WOS研究方向Materials Science ; Nuclear Science & Technology
语种英语
WOS记录号WOS:000404701300034
资助机构National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Magnetic Confinement Fusion Program(2015GB112000) ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; National Natural Science Foundation of China(11575241 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 11575231 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 51301164 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11375230 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11274305 ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216) ; 11475216)
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/33455]  
专题合肥物质科学研究院_中科院固体物理研究所
作者单位1.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
2.Univ Sci & Technol China, Hefei 230026, Peoples R China
3.Southwestern Inst Phys, Chengdu 610041, Peoples R China
4.ATTL Adv Mat Co Ltd, Beijing 100083, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Y. K.,Miao, S.,Xie, Z. M.,et al. Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. JOURNAL OF NUCLEAR MATERIALS,2017,492:260-268.
APA Wang, Y. K..,Miao, S..,Xie, Z. M..,Liu, R..,Zhang, T..,...&Cai, L. H..(2017).Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices.JOURNAL OF NUCLEAR MATERIALS,492,260-268.
MLA Wang, Y. K.,et al."Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices".JOURNAL OF NUCLEAR MATERIALS 492(2017):260-268.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。