Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation
文献类型:期刊论文
作者 | McClenaghan, J.1; Garofalo, A. M.2; Meneghini, O.2; Smith, S. P.2; Leuer, J. A.2; Staebler, G. M.2; Lao, L. L.2; Park, J. M.3; Ding, S. Y.4; Gong, X.4 |
刊名 | NUCLEAR FUSION
![]() |
出版日期 | 2017-11-01 |
卷号 | 57期号:11 |
关键词 | Steady-state Transport Iter Diii-d |
DOI | 10.1088/1741-4326/aa79ca |
文献子类 | Article |
英文摘要 | Transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidalbeta (beta(p)) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high beta(p) scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high beta(p) scenario improve as q(95) approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high beta(p) scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a Q = 5 steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high beta(p) scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve Q = 5. |
WOS关键词 | EQUATION |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000407218600008 |
资助机构 | US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/33570] ![]() |
专题 | 合肥物质科学研究院_中科院等离子体物理研究所 |
作者单位 | 1.Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA 2.Gen Atom, POB 85608, San Diego, CA 92186 USA 3.Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA 4.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | McClenaghan, J.,Garofalo, A. M.,Meneghini, O.,et al. Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation[J]. NUCLEAR FUSION,2017,57(11). |
APA | McClenaghan, J..,Garofalo, A. M..,Meneghini, O..,Smith, S. P..,Leuer, J. A..,...&Qian, J..(2017).Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation.NUCLEAR FUSION,57(11). |
MLA | McClenaghan, J.,et al."Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation".NUCLEAR FUSION 57.11(2017). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。