中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Widening residual skipped network for semantic segmentation

文献类型:期刊论文

作者Su, Wen1,2; Wang, Zengfu1,2
刊名IET IMAGE PROCESSING
出版日期2017-10-01
卷号11期号:10页码:880-887
DOI10.1049/iet-ipr.2017.0070
文献子类Article
英文摘要Over the past two years deep convolutional neural networks have pushed the performance of computer vision systems to soaring heights on semantic segmentation. In this study, the authors present a novel semantic segmentation method of using a deep fully convolutional neural network to achieve image segmentation results with more precise boundary localisation. The above segmentation engine is trainable, and consists of an encoder network with widening residual skipped connections and a decoder network with a pixel-wise classification layer. Here the encoder network with widening residual skipped connections allows the combination of shallow layer features and deep layer semantic features, and the decoder network with classification layer maps the low-resolution encoder features to full resolution image with pixel-wise classification. The experimental results on PASCAL VOC 2012 semantic segmentation dataset and Cityscapes dataset show that the proposed method is effective and competitive.
WOS研究方向Computer Science ; Engineering ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000413198200010
资助机构National Natural Science Foundation of China(61472393) ; National Natural Science Foundation of China(61472393) ; National Natural Science Foundation of China(61472393) ; National Natural Science Foundation of China(61472393) ; National Natural Science Foundation of China(61472393) ; National Natural Science Foundation of China(61472393) ; National Natural Science Foundation of China(61472393) ; National Natural Science Foundation of China(61472393)
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/33828]  
专题合肥物质科学研究院_中科院合肥智能机械研究所
作者单位1.Chinese Acad Sci, Inst Intelligent Machines, Hefei, Anhui, Peoples R China
2.Univ Sci & Technol China, Dept Automat, Hefei, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Su, Wen,Wang, Zengfu. Widening residual skipped network for semantic segmentation[J]. IET IMAGE PROCESSING,2017,11(10):880-887.
APA Su, Wen,&Wang, Zengfu.(2017).Widening residual skipped network for semantic segmentation.IET IMAGE PROCESSING,11(10),880-887.
MLA Su, Wen,et al."Widening residual skipped network for semantic segmentation".IET IMAGE PROCESSING 11.10(2017):880-887.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。