中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Normalized euclidean super-pixels for medical image segmentation

文献类型:会议论文

作者Liu, Feihong1; Feng, Jun1; Su, Wenhuo2; Lv, Zhaohui1; Xiao, Fang1; Qiu, Shi3; Feng, Jun (fengjun@nwu.edu.cn)
出版日期2017
会议日期2017-08-07
会议地点Liverpool, United kingdom
卷号10363 LNAI
DOI10.1007/978-3-319-63315-2_51
页码586-597
英文摘要

We propose a super-pixel segmentation algorithm based on normalized Euclidean distance for handling the uncertainty and complexity in medical image. Benefited from the statistic characteristics, compactness within super-pixels is described by normalized Euclidean distance. Our algorithm banishes the balance factor of the Simple Linear Iterative Clustering framework. In this way, our algorithm properly responses to the lesion tissues, such as tiny lung nodules, which have a little difference in luminance with their neighbors. The effectiveness of proposed algorithm is verified in The Cancer Imaging Archive (TCIA) database. Compared with Simple Linear Iterative Clustering (SLIC) and Linear Spectral Clustering (LSC), the experiment results show that, the proposed algorithm achieves competitive performance over super-pixel segmentation in the state of art. © Springer International Publishing AG 2017.

产权排序3
会议录Intelligent Computing Methodologies - 13th International Conference, ICIC 2017, Proceedings
会议录出版者Springer Verlag
语种英语
ISSN号03029743
ISBN号9783319633145
源URL[http://ir.opt.ac.cn/handle/181661/29242]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Feng, Jun (fengjun@nwu.edu.cn)
作者单位1.School of Information and Technology, Northwest University, Xi’an, China
2.Center for Nonlinear Studies, Department of Mathematicals, Northwest University, Xi’an, China
3.Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an, China
推荐引用方式
GB/T 7714
Liu, Feihong,Feng, Jun,Su, Wenhuo,et al. Normalized euclidean super-pixels for medical image segmentation[C]. 见:. Liverpool, United kingdom. 2017-08-07.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。