Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation
文献类型:期刊论文
作者 | Li, Zhifeng1; Gong, Dihong2; Zhu, Kai3; Tao, Dacheng4,5; Li, Xuelong6 |
刊名 | ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
![]() |
出版日期 | 2017-10-01 |
卷号 | 9期号:1 |
关键词 | Age Estimation Face Image |
ISSN号 | 2157-6904 |
DOI | 10.1145/3090311 |
产权排序 | 6 |
文献子类 | Article |
英文摘要 | Automatic age estimation is an important yet challenging problem. It has many promising applications in social media. Of the existing age estimation algorithms, the personalized approaches are among the most popular ones. However, most person-specific approaches rely heavily on the availability of training images across different ages for a single subject, which is usually difficult to satisfy in practical application of age estimation. To address this limitation, we first propose a new model called Orthogonal Gaussian Process (OGP), which is not restricted by the number of training samples per person. In addition, without sacrifice of discriminative power, OGP is much more computationally efficient than the standard Gaussian Process. Based on OGP, we then develop an effective age estimation approach, namely anisotropic OGP (A-OGP), to further reduce the estimation error. A-OGP is based on an anisotropic noise level learning scheme that contributes to better age estimation performance. To finally optimize the performance of age estimation, we propose a multifeature A-OGP fusion framework that uses multiple features combined with a random sampling method in the feature space. Extensive experiments on several public domain face aging datasets (FG-NET, MORPH Album1, and MORPH Album 2) are conducted to demonstrate the state-of-the-art estimation accuracy of our new algorithms. |
WOS关键词 | FACE IMAGES ; REGRESSION ; RECOGNITION ; FEATURES ; MANIFOLD |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000414316900002 |
资助机构 | External Cooperation Program of BIC, the Chinese Academy of Sciences(172644KYSB20160033) ; Australian Research Council(FT-130101457 ; Natural Science Foundation of Guangdong Province(2014A030313688) ; DP-140102164 ; LP-150100671) |
源URL | [http://ir.opt.ac.cn/handle/181661/29386] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China 2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Comp Vis & Virtual Real Te, Shenzhen, Peoples R China 3.Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Hong Kong, Peoples R China 4.Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, J12,6 Cleveland St, Darlington, NSW 2008, Australia 5.Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, J12,6 Cleveland St, Darlington, NSW 2008, Australia 6.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Zhifeng,Gong, Dihong,Zhu, Kai,et al. Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2017,9(1). |
APA | Li, Zhifeng,Gong, Dihong,Zhu, Kai,Tao, Dacheng,&Li, Xuelong.(2017).Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,9(1). |
MLA | Li, Zhifeng,et al."Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 9.1(2017). |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。