Compressive sensing depth video coding via gaussian mixture models and object edges
文献类型:会议论文
作者 | Wang, Kang1; Lan, Xuguang1; Li, Xiangwei(李翔伟)2; Yang, Meng1; Zheng, Nanning1; Lan, Xuguang (xglan@mail.xjtu.edu.cn)1 |
出版日期 | 2018 |
会议日期 | 2017-09-28 |
会议地点 | Harbin, China |
卷号 | 10735 LNCS |
DOI | 10.1007/978-3-319-77380-3_10 |
页码 | 96-104 |
英文摘要 | In this paper, we propose a novel compressive sensing depth video (CSDV) coding scheme based on Gaussian mixture models (GMM) and object edges. We first compress several depth videos to get CSDV frames in the temporal direction. A whole CSDV frame is divided into a set of non-overlap patches in which object edges is detected by Canny operator to reduce the computational complexity of quantization. Then, we allocate variable bits for different patches based on the percentages of non-zero pixels in every patch. The GMM is used to model the CSDV frame patches and design product vector quantizers to quantize CSDV frames. The experimental results show that our compression scheme achieves a significant Bjontegaard Delta (BD)-PSNR improvement about 2–10 dB when compared to the standard video coding schemes, e.g. Uniform Scalar Quantization-Differential Pulse Code Modulation (USQ-DPCM) and H.265/HEVC. © Springer International Publishing AG, part of Springer Nature 2018. |
产权排序 | 2 |
会议录 | Advances in Multimedia Information Processing – PCM 2017 - 18th Pacific-Rim Conference on Multimedia, Revised Selected Papers
![]() |
会议录出版者 | Springer Verlag |
语种 | 英语 |
ISSN号 | 03029743 |
ISBN号 | 9783319773797 |
WOS记录号 | WOS:000460422000010 |
源URL | [http://ir.opt.ac.cn/handle/181661/30321] ![]() |
专题 | 西安光学精密机械研究所_光电测量技术实验室 |
通讯作者 | Lan, Xuguang (xglan@mail.xjtu.edu.cn) |
作者单位 | 1.Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China 2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China |
推荐引用方式 GB/T 7714 | Wang, Kang,Lan, Xuguang,Li, Xiangwei,et al. Compressive sensing depth video coding via gaussian mixture models and object edges[C]. 见:. Harbin, China. 2017-09-28. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。