中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Compressive sensing depth video coding via gaussian mixture models and object edges

文献类型:会议论文

作者Wang, Kang1; Lan, Xuguang1; Li, Xiangwei(李翔伟)2; Yang, Meng1; Zheng, Nanning1; Lan, Xuguang (xglan@mail.xjtu.edu.cn)1
出版日期2018
会议日期2017-09-28
会议地点Harbin, China
卷号10735 LNCS
DOI10.1007/978-3-319-77380-3_10
页码96-104
英文摘要

In this paper, we propose a novel compressive sensing depth video (CSDV) coding scheme based on Gaussian mixture models (GMM) and object edges. We first compress several depth videos to get CSDV frames in the temporal direction. A whole CSDV frame is divided into a set of non-overlap patches in which object edges is detected by Canny operator to reduce the computational complexity of quantization. Then, we allocate variable bits for different patches based on the percentages of non-zero pixels in every patch. The GMM is used to model the CSDV frame patches and design product vector quantizers to quantize CSDV frames. The experimental results show that our compression scheme achieves a significant Bjontegaard Delta (BD)-PSNR improvement about 2–10 dB when compared to the standard video coding schemes, e.g. Uniform Scalar Quantization-Differential Pulse Code Modulation (USQ-DPCM) and H.265/HEVC. © Springer International Publishing AG, part of Springer Nature 2018.

产权排序2
会议录Advances in Multimedia Information Processing – PCM 2017 - 18th Pacific-Rim Conference on Multimedia, Revised Selected Papers
会议录出版者Springer Verlag
语种英语
ISSN号03029743
ISBN号9783319773797
WOS记录号WOS:000460422000010
源URL[http://ir.opt.ac.cn/handle/181661/30321]  
专题西安光学精密机械研究所_光电测量技术实验室
通讯作者Lan, Xuguang (xglan@mail.xjtu.edu.cn)
作者单位1.Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China
2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China
推荐引用方式
GB/T 7714
Wang, Kang,Lan, Xuguang,Li, Xiangwei,et al. Compressive sensing depth video coding via gaussian mixture models and object edges[C]. 见:. Harbin, China. 2017-09-28.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。