中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
FFGS: Feature fusion with gating structure for image caption generation

文献类型:会议论文

作者Yuan, Aihong1,2; Li, Xuelong1; Lu, Xiaoqiang1; Lu, Xiaoqiang (luxq666666@gmail.com)
出版日期2017
会议日期2017-10-11
会议地点Tianjin, China
卷号771
DOI10.1007/978-981-10-7299-4_53
页码638-649
英文摘要

Automatically generating a natural language to describe the content of the given image is a challenging task in the interdisciplinary between computer vision and natural language processing. The task is challenging because computers not only need to recognize objects, their attributions and relationships between them in an image, but also these elements should be represented into a natural language sentence. This paper proposed a feature fusion with gating structure for image caption generation. First, the pre-trained VGG-19 is used as the image feature extractor. We use the FC-7 and CONV5-4 layer’s outputs as the global and local image feature, respectively. Second, the image features and the corresponding sentence are imported into LSTM to learn their relationship. The global image feature is gated at each time-step before imported into LSTM while the local image feature used the attention model. Experimental results show our method outperform the state-of-the-art methods. © Springer Nature Singapore Pte Ltd. 2017.

产权排序1
会议录Computer Vision - 2nd CCF Chinese Conference, CCCV 2017, Proceedings
会议录出版者Springer Verlag
语种英语
ISSN号18650929
ISBN号9789811072987
WOS记录号WOS:000449835200053
源URL[http://ir.opt.ac.cn/handle/181661/29611]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Lu, Xiaoqiang (luxq666666@gmail.com)
作者单位1.Center for OPTical IMagery Analysis and Learning (OPTIMAL), Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; Shaanxi; 710119, China
2.University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing; 100049, China
推荐引用方式
GB/T 7714
Yuan, Aihong,Li, Xuelong,Lu, Xiaoqiang,et al. FFGS: Feature fusion with gating structure for image caption generation[C]. 见:. Tianjin, China. 2017-10-11.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。