FFGS: Feature fusion with gating structure for image caption generation
文献类型:会议论文
作者 | Yuan, Aihong1,2; Li, Xuelong1![]() ![]() |
出版日期 | 2017 |
会议日期 | 2017-10-11 |
会议地点 | Tianjin, China |
卷号 | 771 |
DOI | 10.1007/978-981-10-7299-4_53 |
页码 | 638-649 |
英文摘要 | Automatically generating a natural language to describe the content of the given image is a challenging task in the interdisciplinary between computer vision and natural language processing. The task is challenging because computers not only need to recognize objects, their attributions and relationships between them in an image, but also these elements should be represented into a natural language sentence. This paper proposed a feature fusion with gating structure for image caption generation. First, the pre-trained VGG-19 is used as the image feature extractor. We use the FC-7 and CONV5-4 layer’s outputs as the global and local image feature, respectively. Second, the image features and the corresponding sentence are imported into LSTM to learn their relationship. The global image feature is gated at each time-step before imported into LSTM while the local image feature used the attention model. Experimental results show our method outperform the state-of-the-art methods. © Springer Nature Singapore Pte Ltd. 2017. |
产权排序 | 1 |
会议录 | Computer Vision - 2nd CCF Chinese Conference, CCCV 2017, Proceedings
![]() |
会议录出版者 | Springer Verlag |
语种 | 英语 |
ISSN号 | 18650929 |
ISBN号 | 9789811072987 |
WOS记录号 | WOS:000449835200053 |
源URL | [http://ir.opt.ac.cn/handle/181661/29611] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Lu, Xiaoqiang (luxq666666@gmail.com) |
作者单位 | 1.Center for OPTical IMagery Analysis and Learning (OPTIMAL), Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; Shaanxi; 710119, China 2.University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Yuan, Aihong,Li, Xuelong,Lu, Xiaoqiang,et al. FFGS: Feature fusion with gating structure for image caption generation[C]. 见:. Tianjin, China. 2017-10-11. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。