Hyperspectral image band selection via global optimal clustering
文献类型:会议论文
作者 | Zhang, Fahong1; Wang, Qi1; Li, Xuelong2 |
出版日期 | 2017-12-01 |
会议日期 | 2017-07-23 |
会议地点 | Fort Worth, TX, United states |
卷号 | 2017-July |
DOI | 10.1109/IGARSS.2017.8126818 |
页码 | 1-4 |
英文摘要 | Band selection, by choosing a set of representative bands in hyperspectral images (HSI), is concerned to be an effective method to eliminate the 'Hughes phenomenon'. In this paper, we present a global optimal clustering-based band selection (GOC) algorithm based on the hypothesis that all the bands in a cluster are continuous at their wavelengths. After the clustering result is obtained, we propose a greedy-based method to select representative bands in each cluster, trying to minimize the linear reconstruction error. Experiment on a real HSI dataset shows that the proposed method outperforms the state-of-the-art competitors. © 2017 IEEE. |
产权排序 | 2 |
会议录 | 2017 IEEE International Geoscience and Remote Sensing Symposium: International Cooperation for Global Awareness, IGARSS 2017 - Proceedings
![]() |
会议录出版者 | Institute of Electrical and Electronics Engineers Inc. |
语种 | 英语 |
ISBN号 | 9781509049516 |
源URL | [http://ir.opt.ac.cn/handle/181661/29941] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Wang, Qi |
作者单位 | 1.School of Computer Science, Center for OPTical IMagery Analysis and Learning, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China 2.Center for OPTical IMagery Analysis and Learning, Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi, 710119, China |
推荐引用方式 GB/T 7714 | Zhang, Fahong,Wang, Qi,Li, Xuelong. Hyperspectral image band selection via global optimal clustering[C]. 见:. Fort Worth, TX, United states. 2017-07-23. |
入库方式: OAI收割
来源:西安光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。