SCE: A Manifold Regularized Set-Covering Method for Data Partitioning
文献类型:期刊论文
作者 | Li, Xuelong1![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
出版日期 | 2018-05-01 |
卷号 | 29期号:5页码:1760-1773 |
关键词 | Cluster Ensemble Discriminative Constraint Manifold Structure Set Covering |
ISSN号 | 2162-237X |
DOI | 10.1109/TNNLS.2017.2682179 |
产权排序 | 1 |
文献子类 | Article |
英文摘要 | Cluster analysis plays a very important role in data analysis. In these years, cluster ensemble, as a cluster analysis tool, has drawn much attention for its robustness, stability, and accuracy. Many efforts have been done to combine different initial clustering results into a single clustering solution with better performance. However, they neglect the structure information of the raw data in performing the cluster ensemble. In this paper, we propose a Structural Cluster Ensemble (SCE) algorithm for data partitioning formulated as a set-covering problem. In particular, we construct a Laplacian regularized objective function to capture the structure information among clusters. Moreover, considering the importance of the discriminative information underlying in the initial clustering results, we add a discriminative constraint into our proposed objective function. Finally, we verify the performance of the SCE algorithm on both synthetic and real data sets. The experimental results show the effectiveness of our proposed method SCE algorithm. |
学科主题 | Computer Science, Artificial Intelligence |
WOS关键词 | CLUSTERING ENSEMBLES ; MINIMUM SUM ; EVIDENCE ACCUMULATION ; ALGORITHM ; SEARCH ; FRAMEWORK ; SUBSPACE |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000430729100029 |
资助机构 | National Natural Science Foundation of China(U1604153 ; International Science and Technology Cooperation Project of Henan Province(162102410021) ; State Key Laboratory of Virtual Reality Technology and Systems(BUAA-VR-16KF-04) ; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province(GD201605) ; Australian Research Council(FT-130101457 ; 61125106) ; DP-140102164 ; LP-150100671) |
源URL | [http://ir.opt.ac.cn/handle/181661/30077] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China. |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Peoples R China 4.Univ Sydney, UBTech Sydney Artificial Intelligence Inst, Darlington, NSW 2008, Australia 5.Univ Sydney, Sch Informat Technol Fac Engn & Informat Technol, Darlington, NSW 2008, Australia |
推荐引用方式 GB/T 7714 | Li, Xuelong,Lu, Quanmao,Dong, Yongsheng,et al. SCE: A Manifold Regularized Set-Covering Method for Data Partitioning[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(5):1760-1773. |
APA | Li, Xuelong,Lu, Quanmao,Dong, Yongsheng,Tao, Dacheng,&Dong, YS .(2018).SCE: A Manifold Regularized Set-Covering Method for Data Partitioning.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(5),1760-1773. |
MLA | Li, Xuelong,et al."SCE: A Manifold Regularized Set-Covering Method for Data Partitioning".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.5(2018):1760-1773. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。