中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于Shearlet变换的井下图像差异性特征提取方法

文献类型:中文期刊论文

作者黄玉1; 张英俊1; 潘理虎1
发表日期2016
关键词煤矿考勤 人脸识别 特征提取 Shearlet变换 特征编码 Shannon熵
英文摘要针对井下收集的人脸图像易受煤尘干扰且一般特征提取方法对噪声较敏感的问题,提出一种基于Shearlet变换的井下图像差异性特征提取方法。首先利用Shearlet变换将图像进行多尺度多方向分解,然后对同一尺度的各方向子图利用实部特征进行编码融合,进而根据各尺度子图的Shannon熵值赋予不同权值进行再融合,最后对低频子图和融合后的高频子图利用Shearlet逆变换重构得到差异性图像。实验结果表明,该方法具有较好的客观评价指标与主观效果。
出处工矿自动化
03页:64-68
语种中文
源URL[http://ir.igsnrr.ac.cn/handle/311030/41803]  
专题地理科学与资源研究所_历年回溯文献
作者单位1.太原科技大学计算机科学与技术学院
2.中国科学院地理科学与资源研究所
推荐引用方式
GB/T 7714
黄玉,张英俊,潘理虎. 基于Shearlet变换的井下图像差异性特征提取方法. 2016.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。