An Analytical Model for Multifractal Systems
文献类型:期刊论文
作者 | Jun Li![]() |
刊名 | Journal of Applied Mathematics and Physics
![]() |
出版日期 | 2016 |
卷号 | 4页码:1192-1201 |
关键词 | Multifractal Jake-jun Model Cantor Set Sierpinski Carpet Price Oscillation |
ISSN号 | 0021-8928 |
DOI | 10.4236/jamp.2016.47124 |
通讯作者 | Jun Li |
英文摘要 | Previous multifractal spectrum theories can only reflect that an object is multifractal and few explicit expressions of f(α) can be obtained for the practical application of nonlinearity measure. In this paper, an analytical model for multifractal systems is developed by combining and improving the Jake model, Tyler fractal model and Gompertz curve, which allows one to obtain explicit expressions of a multifractal spectrum. The results show that the model can deal with many classical multifractal examples well, such as soil particle-size distributions, non-standard Sierpinski carpet and three-piece-fractal market price oscillations. Applied to the soil physics, the model can effectively predict the cumulative mass of particles across the entire range of soil textural classes. |
语种 | 英语 |
源URL | [http://ir.imde.ac.cn/handle/131551/20742] ![]() |
专题 | 成都山地灾害与环境研究所_山地灾害与地表过程重点实验室 |
作者单位 | Key Laboratory of Mountain Surface Process and Hazards/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China |
推荐引用方式 GB/T 7714 | Jun Li. An Analytical Model for Multifractal Systems[J]. Journal of Applied Mathematics and Physics,2016,4:1192-1201. |
APA | Jun Li.(2016).An Analytical Model for Multifractal Systems.Journal of Applied Mathematics and Physics,4,1192-1201. |
MLA | Jun Li."An Analytical Model for Multifractal Systems".Journal of Applied Mathematics and Physics 4(2016):1192-1201. |
入库方式: OAI收割
来源:成都山地灾害与环境研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。