A Novel Approach to Extracting Non-Negative Latent Factors From Non-Negative Big Sparse Matrices
文献类型:期刊论文
作者 | Luo, Xin1,2![]() ![]() |
刊名 | IEEE ACCESS
![]() |
出版日期 | 2016 |
卷号 | 4页码:2649-2655 |
关键词 | Latent factors non-negativity matrix factorization non-negative big sparse matrix big data recommender system |
ISSN号 | 2169-3536 |
DOI | 10.1109/ACCESS.2016.2556680 |
通讯作者 | Luo, X (reprint author), Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China. ; Luo, X (reprint author), Shenzhen Univ, Shenzhen Engn Lab Mobile Internet Applicat Middle, Shenzhen 518060, Peoples R China. ; Zhou, MC (reprint author), Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China. ; Zhou, MC (reprint author), New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Newark, NJ 07102 USA. |
英文摘要 | An inherently non-negative latent factor model is proposed to extract non-negative latent factors from non-negative big sparse matrices efficiently and effectively. A single-element-dependent sigmoid function connects output latent factors with decision variables, such that non-negativity constraints on the output latent factors are always fulfilled and thus successfully separated from the training process with respect to the decision variables. Consequently, the proposed model can be easily and fast built with excellent prediction accuracy. Experimental results on an industrial size sparse matrix are given to verify its outstanding performance and suitability for industrial applications. |
资助项目 | Fundo para o Desenvolvimento das Ciencias e da Tecnologia[119/2014/A3] ; National Natural Science Foundation of China[61370150] ; National Natural Science Foundation of China[61433014] ; Young Scientist Foundation of Chongqing[cstc2014kjrc-qnrc40005] ; Chongqing Research Program of Basic Research and Frontier Technology[cstc2015jcyjB0244] ; Post-Doctoral Science Funded Project of Chongqing[Xm2014043] ; Fundamental Research Funds for the Central Universities[106112015CDJXY180005] ; Specialized Research Fund for the Doctoral Program of Higher Education[20120191120030] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000379759300015 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.138/handle/2HOD01W0/2669] ![]() |
专题 | 大数据挖掘及应用中心 |
通讯作者 | Luo, Xin; Zhou, Mengchu |
作者单位 | 1.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China 2.Shenzhen Univ, Shenzhen Engn Lab Mobile Internet Applicat Middle, Shenzhen 518060, Peoples R China 3.Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China 4.New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Newark, NJ 07102 USA 5.Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China 6.Chongqing Univ, Coll Comp Sci, Chongqing Key Lab Software Theory & Technol, Chongqing 400044, Peoples R China |
推荐引用方式 GB/T 7714 | Luo, Xin,Zhou, Mengchu,Shang, Mingsheng,et al. A Novel Approach to Extracting Non-Negative Latent Factors From Non-Negative Big Sparse Matrices[J]. IEEE ACCESS,2016,4:2649-2655. |
APA | Luo, Xin,Zhou, Mengchu,Shang, Mingsheng,Li, Shuai,&Xia, Yunni.(2016).A Novel Approach to Extracting Non-Negative Latent Factors From Non-Negative Big Sparse Matrices.IEEE ACCESS,4,2649-2655. |
MLA | Luo, Xin,et al."A Novel Approach to Extracting Non-Negative Latent Factors From Non-Negative Big Sparse Matrices".IEEE ACCESS 4(2016):2649-2655. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。