中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation

文献类型:期刊论文

作者Wang, Huabin1,2,4; Wilksch, Jonathan J.3; Chen, Ligang1; Tan, Jason W. H.3; Strugnell, Richard A.3; Gee, Michelle L.2
刊名LANGMUIR
出版日期2017-01-20
卷号33期号:1页码:100-106
ISSN号0743-7463
DOI10.1021/acs.langmuir.6b03764
通讯作者Wang, HB (reprint author), Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Multiscale Mfg Technol, Chongqing 400714, Peoples R China. ; Wang, HB ; Gee, ML (reprint author), Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia. ; Wang, HB (reprint author), Chinese Acad Sci, Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China.
英文摘要The surface polymers of bacteria determine the ability of bacteria to adhere to a substrate for colonization, which is an essential step for a variety of microbial processes, such as biofilm formation and biofouling. Capsular polysaccharides and fimbriae are two major components on a bacterial surface, which are critical for mediating cell-surface interactions. Adhesion and viscoelasticity of bacteria are two major physical properties related to bacteria surface interactions. In this study, we employed atomic force microscopy (AFM) to interrogate how the adhesion work and the viscoelasticity of a bacterial pathogen, Klebsiella pneumoniae, influence biofilm formation. To do this, the wild-type, type 3 fimbriae-deficient, and type 3 fimbriae-overexpressed K. pneumoniae strains have been investigated in an aqueous environment. The results show that the measured adhesion work is positively correlated to biofilm formation; however, the viscoelasticity is not correlated to biofilm formation. This study indicates that AFM-based adhesion measurements of bacteria can be used to evaluate the function of bacterial surface polymers in biofilm formation and to predict the ability of bacterial biofilm formation.
资助项目Melbourne Materials Institute ; Australian Government National Health and Medical Research Council (NHMRC) Project[628770] ; National Key Research and Development Program of China[2016YFC0101002] ; Chongqing Science and Technology Commission[cstc2015jcyjiA10057] ; Chongqing Science and Technology Commission[YJ500061LH1] ; Chinese Academy of Sciences[R52A500Z10]
WOS研究方向Chemistry ; Materials Science
语种英语
WOS记录号WOS:000391898100012
出版者AMER CHEMICAL SOC
源URL[http://172.16.51.4:88/handle/2HOD01W0/280]  
专题太赫兹技术研究中心
通讯作者Wang, Huabin; Gee, Michelle L.
作者单位1.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Multiscale Mfg Technol, Chongqing 400714, Peoples R China
2.Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia
3.Univ Melbourne, Peter Doherty Inst Infect & Immun, Dept Microbiol & Immunol, Parkville, Vic 3010, Australia
4.Chinese Acad Sci, Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China
推荐引用方式
GB/T 7714
Wang, Huabin,Wilksch, Jonathan J.,Chen, Ligang,et al. Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation[J]. LANGMUIR,2017,33(1):100-106.
APA Wang, Huabin,Wilksch, Jonathan J.,Chen, Ligang,Tan, Jason W. H.,Strugnell, Richard A.,&Gee, Michelle L..(2017).Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation.LANGMUIR,33(1),100-106.
MLA Wang, Huabin,et al."Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation".LANGMUIR 33.1(2017):100-106.

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。