中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dynamic stress intensity factor of a functionally graded material under antiplane shear loading

文献类型:期刊论文

作者Li CY(李春雨); Weng GJ; Duan ZP(段祝平); Zou ZZ(邹振祝)
刊名Acta Mechanica
出版日期2001
卷号149期号:1-4页码:1-10
ISSN号0001-5970
通讯作者Li, C (reprint author), Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA.
中文摘要The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.
学科主题力学
类目[WOS]Mechanics
研究领域[WOS]Mechanics
关键词[WOS]CRACK PROBLEM ; GRADIENT MATERIAL ; FRACTURE-MECHANICS ; GRIFFITH CRACK ; PLATE
收录类别SCI ; EI
语种英语
WOS记录号WOS:000170607700001
公开日期2007-06-15 ; 2007-12-05 ; 2009-06-23
源URL[http://dspace.imech.ac.cn/handle/311007/17021]  
专题力学研究所_力学所知识产出(1956-2008)
推荐引用方式
GB/T 7714
Li CY,Weng GJ,Duan ZP,et al. Dynamic stress intensity factor of a functionally graded material under antiplane shear loading[J]. Acta Mechanica,2001,149(1-4):1-10.
APA 李春雨,Weng GJ,段祝平,&邹振祝.(2001).Dynamic stress intensity factor of a functionally graded material under antiplane shear loading.Acta Mechanica,149(1-4),1-10.
MLA 李春雨,et al."Dynamic stress intensity factor of a functionally graded material under antiplane shear loading".Acta Mechanica 149.1-4(2001):1-10.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。