中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Joint Rotation Invariant Feature for Vehicle Detection in Aerial Images

文献类型:会议论文

作者Li, Dawei; Li, Mingtao; Zheng, Jianhua; Wang, Yuanchao; Li, DW (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, 1 Nanertiao, Beijing 100190, Peoples R China.; Li, DW (reprint author), Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China.
出版日期2017
会议日期MAY 19-22, 2017
会议地点Hong Kong, PEOPLES R CHINA
英文摘要This paper introduces a joint feature of Fourier histograms of oriented gradients (FHOG) and local binary pattern (LBP) for vehicle detection in aerial images. Both of them are rotation invariant, so any rotation angle of vehicle in aerial images can be easily detected. A linear support vector machine (SVM) classifier is then trained over the joint feature vectors for the final vehicle detection. We evaluate our method on a public dataset and compare with some state-of-the-art algorithms, the proposed joint feature outperforms them in detecting small targets in complicated backgrounds.
会议录NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017)
语种英语
ISSN号0277-786X
ISBN号978-1-5106-1305-8; 978-1-5106-1304-1
源URL[http://ir.nssc.ac.cn/handle/122/6043]  
专题国家空间科学中心_空间技术部
通讯作者Li, DW (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, 1 Nanertiao, Beijing 100190, Peoples R China.; Li, DW (reprint author), Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China.
推荐引用方式
GB/T 7714
Li, Dawei,Li, Mingtao,Zheng, Jianhua,et al. Joint Rotation Invariant Feature for Vehicle Detection in Aerial Images[C]. 见:. Hong Kong, PEOPLES R CHINA. MAY 19-22, 2017.

入库方式: OAI收割

来源:国家空间科学中心

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。