中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Predicting Depression from Internet Behaviors by Timefrequency Features

文献类型:会议论文

作者Zhu, CY (Zhu, Changye)1; Li, BB (Li, Baobin)1; Li, A (Li, Ang)2; Zhu, TS (Zhu, Tingshao)3
出版日期2016-10
会议日期OCT 13-16, 2016
会议地点Omaha, NE
卷号不详
期号不详
DOI10.1109/WI.2016.59
页码383-390
英文摘要

Early detection of depression is important to improve human well-being. This paper proposes a new method to detect depression through time-frequency analysis of Internet behaviors. We recruited 728 postgraduate students and obtained their scores on a depression questionnaire (Zung Selfrating Depression Scale, SDS) and digital records of Internet behaviors. By time-frequency analysis, we built classification models for differentiating higher SDS group from lower group and prediction models for identifying mental status of depressed group more precisely. Experimental results show classification and prediction models work well, and time-frequency features are effective in capturing the changes of mental health status. Results of this paper might be useful to improve the performance of public mental health services.

会议录2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016)
语种英语
源URL[http://ir.psych.ac.cn/handle/311026/26554]  
专题心理研究所_社会与工程心理学研究室
作者单位1.Univ Chinese Acad Sci, Sch Comp & Control, Beijing 100190, Peoples R China
2.Beijing Forestry Univ, Dept Psychol, Beijing 100083, Peoples R China
3.Chinese Acad Sci, Inst Psychol, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Zhu, CY ,Li, BB ,Li, A ,et al. Predicting Depression from Internet Behaviors by Timefrequency Features[C]. 见:. Omaha, NE. OCT 13-16, 2016.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。