Predicting Depression from Internet Behaviors by Timefrequency Features
文献类型:会议论文
作者 | Zhu, CY (Zhu, Changye)1; Li, BB (Li, Baobin)1; Li, A (Li, Ang)2; Zhu, TS (Zhu, Tingshao)3 |
出版日期 | 2016-10 |
会议日期 | OCT 13-16, 2016 |
会议地点 | Omaha, NE |
卷号 | 不详 |
期号 | 不详 |
DOI | 10.1109/WI.2016.59 |
页码 | 383-390 |
英文摘要 | Early detection of depression is important to improve human well-being. This paper proposes a new method to detect depression through time-frequency analysis of Internet behaviors. We recruited 728 postgraduate students and obtained their scores on a depression questionnaire (Zung Selfrating Depression Scale, SDS) and digital records of Internet behaviors. By time-frequency analysis, we built classification models for differentiating higher SDS group from lower group and prediction models for identifying mental status of depressed group more precisely. Experimental results show classification and prediction models work well, and time-frequency features are effective in capturing the changes of mental health status. Results of this paper might be useful to improve the performance of public mental health services. |
会议录 | 2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016)
![]() |
语种 | 英语 |
源URL | [http://ir.psych.ac.cn/handle/311026/26554] ![]() |
专题 | 心理研究所_社会与工程心理学研究室 |
作者单位 | 1.Univ Chinese Acad Sci, Sch Comp & Control, Beijing 100190, Peoples R China 2.Beijing Forestry Univ, Dept Psychol, Beijing 100083, Peoples R China 3.Chinese Acad Sci, Inst Psychol, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, CY ,Li, BB ,Li, A ,et al. Predicting Depression from Internet Behaviors by Timefrequency Features[C]. 见:. Omaha, NE. OCT 13-16, 2016. |
入库方式: OAI收割
来源:心理研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。