中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Mineralogy of the Aktogai giant porphyry Cu deposit in Kazakhstan: Insights into the fluid composition and oxygen fugacity evolution

文献类型:期刊论文

作者Li, Changhao1,2,3; Shen, Ping1,2,3; Pan, Hongdi4
刊名ORE GEOLOGY REVIEWS
出版日期2018-04-01
卷号95页码:899-916
关键词Chlorite Empirical and thermodynamic geothermometers Hydrothermal fluid composition Oxygen fugacity Aktogai giant porphyry Cu deposit
ISSN号0169-1368
DOI10.1016/j.oregeorev.2018.03.027
文献子类Article
英文摘要It has been proposed that most giant porphyry Cu deposits are closely associated with oxidized magmas. Most recently, many methods, including zircon trace elements, Mn content in apatite and magnetite-ilmenite mineral pair, were used to reveal the primary magmatic oxygen fugacity of the porphyry Cu deposits. Hydrothermal alterations are products of water-rock reactions and can form various hydrothermal minerals which can be used for exploration. The Aktogai Group, including Aktogai, Aidarly and Kyzilkia, contains more than 12.5 Mt Cu @ 0.4 wt% and 80 t Au @ 0.007 g/t-0.4 g/t. Chlorites show significant variations in the Aktogai deposit, which are responsible for degrees of Tschermak and Di-trioctahedral substitution. Chlorites are divided into type I and II based on Fe/(Fe + Mg) ratios of chlorites which are predominately controlled by hydrothermal fluid composition and oxygen fugacity. The chlorite I have higher Fe/(Fe + Mg) ratios than chlorite II. The formation temperatures of chlorite are 248-322 degrees C based on empirical geothermometry T5. Sericites belong to muscovite and phengitic muscovite, and their compositions are controlled by Tschermak and Fe3+VI = Al3+VI substitution. Water-rock reaction leaches out some elements into hydrothermal fluids, therein Si4+ and K+ precipitate as quartz and sericite at all alteration stages, but Fe2+ and Ca2+ precipitate as specific minerals (such as chalcopyrite and calcite) at main mineralization or late stage. The chlorite I form under a Fe-rich condition with high water/rock ratio, while chlorite II form under a low water/rock ratio and Fe-poor condition which may be responsible for the sulfides and epidote precipitation. According to zircon trace elements, Mn content in apatite, magnetite-ilmenite mineral pair, and Fe/(Fe + Mg) and Fe3+/TFe ratios of chlorites, the oxygen fugacity changes from high at magmatic and early hydrothermal stages, through low at main mineralization stage, to slightly high at late or post mineralization stage. Our results, combined with previous works suggest that Fe contents and Fe/(Fe + Mg) ratios of chlorites are good indicators for exploration.
WOS关键词ASIAN OROGENIC BELT ; HYDROTHERMAL ORE-DEPOSITS ; PALEOZOIC CRUSTAL GROWTH ; MASSIVE SULFIDE DEPOSIT ; COPPER-DEPOSIT ; CHLORITE GEOTHERMOMETRY ; CHEMICAL-COMPOSITION ; NORTHERN CHILE ; SOLID-SOLUTION ; NW CHINA
WOS研究方向Geology ; Mineralogy ; Mining & Mineral Processing
语种英语
WOS记录号WOS:000432760500049
出版者ELSEVIER SCIENCE BV
资助机构National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; U1303293 ; U1303293 ; U1303293 ; U1303293 ; 41272109) ; 41272109) ; 41272109) ; 41272109) ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; U1303293 ; U1303293 ; U1303293 ; U1303293 ; 41272109) ; 41272109) ; 41272109) ; 41272109) ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; U1303293 ; U1303293 ; U1303293 ; U1303293 ; 41272109) ; 41272109) ; 41272109) ; 41272109) ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; National Natural Science Foundation of China(41390442 ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of MLR Key Laboratory of Metallogeny and Mineral Assessment(ZS1701) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Open Foundation of KLMR of Chinese Academy of Sciences(KLMR2017-16) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; Key Deployment Project of the Chinese Academy of Sciences(KJZD-EW-TZ-G07) ; U1303293 ; U1303293 ; U1303293 ; U1303293 ; 41272109) ; 41272109) ; 41272109) ; 41272109)
源URL[http://ir.iggcas.ac.cn/handle/132A11/88188]  
专题地质与地球物理研究所_中国科学院矿产资源研究重点实验室
通讯作者Shen, Ping
作者单位1.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Mineral Resources, Beijing 100029, Peoples R China
2.Chinese Acad Sci, Inst Earth Sci, Beijing 100029, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Changan Univ, Coll Earth Sci, Xian 710054, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Li, Changhao,Shen, Ping,Pan, Hongdi. Mineralogy of the Aktogai giant porphyry Cu deposit in Kazakhstan: Insights into the fluid composition and oxygen fugacity evolution[J]. ORE GEOLOGY REVIEWS,2018,95:899-916.
APA Li, Changhao,Shen, Ping,&Pan, Hongdi.(2018).Mineralogy of the Aktogai giant porphyry Cu deposit in Kazakhstan: Insights into the fluid composition and oxygen fugacity evolution.ORE GEOLOGY REVIEWS,95,899-916.
MLA Li, Changhao,et al."Mineralogy of the Aktogai giant porphyry Cu deposit in Kazakhstan: Insights into the fluid composition and oxygen fugacity evolution".ORE GEOLOGY REVIEWS 95(2018):899-916.

入库方式: OAI收割

来源:地质与地球物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。