中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Exclusive Constrained Discriminative Learning for Weakly-Supervised Semantic Segmentation

文献类型:会议论文

作者Ying P(应鹏); Liu J(刘静); Lu HQ(卢汉清); Ma SD(马颂德)
出版日期2015-10
会议日期26 – 30,October,2015
会议地点Brisbane, Queensland, Australia
关键词Semantic Segmentation Weak Supervision
英文摘要
;
How to import image-level labels as weak supervision to direct the region-level labeling task is the core task of weaklysupervised semantic segmentation. In this paper, we focus on designing an effective but simple weakly-supervised constraint, and propose an exclusive constrained discriminative learning model for image semantic segmentation. To be specific, we employ a discriminative linear regression model to assign subsets of superpixels with different labels. During the assignment, we construct an exclusive weakly-supervised constraint term to suppress the labeling responses of each superpixel on the labels outside its parent image-level label set.. Besides, a spectral smoothing term is integrated to encourage that both visually and semantically similar superpixels have similar labels. Combining these terms, we formulate the problem as a convex objective function, which can be easily optimized via alternative iterations. Extensive experiments on MSRC-21 and LabelMe datasets demonstrate the effectiveness of the proposed model.
会议录ACM Digital Library
源URL[http://ir.ia.ac.cn/handle/173211/11598]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
通讯作者Ying P(应鹏)
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Ying P,Liu J,Lu HQ,et al. Exclusive Constrained Discriminative Learning for Weakly-Supervised Semantic Segmentation[C]. 见:. Brisbane, Queensland, Australia. 26 – 30,October,2015.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。