中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Change detection based on auto-encoder model for VHR images

文献类型:会议论文

作者Xu Y(徐元); Xiang Shiming; Huo Chunlei; Pan Chunhong; Xu Yuan
出版日期2013
会议日期2013-8-10
会议地点武汉
关键词Change Detection Deep Learning Auto-encoder Vhr
英文摘要Change detection of VHR (Very High Resolution) images is very difficult due to the impacts caused by the seasonal
changes, the imaging condition, and so on. To address the above difficulty, a novel unsupervised change detection
algorithm is proposed based on deep learning, where the complex correspondence between the images is established by
Auto-encoder Model. By taking advantages of the powerful ability of deep learning in compensating the impacts
implicitly, the multi-temporal images can be compared fairly. Experiments demonstrate the effectiveness of the proposed
approach.
会议录MIPPR2013
会议录出版者International Society for Optics and Photonics
会议录出版地中国
源URL[http://ir.ia.ac.cn/handle/173211/11690]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
通讯作者Xu Yuan
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Xu Y,Xiang Shiming,Huo Chunlei,et al. Change detection based on auto-encoder model for VHR images[C]. 见:. 武汉. 2013-8-10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。