中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Collaborative Correlation Tracking

文献类型:会议论文

作者Zhu, Guibo1; Wang, Jinqiao1; Wu, Yi2; Lu, Hanqing1
出版日期2015
会议日期September 7-10
会议地点Swansea, UK
关键词Visual Tracking Collaborative Correlation Tracking
英文摘要Correlation filter based tracking has attracted many researchers’ attention in recent years for high efficiency and robustness. Most existing works focus on exploiting different characteristics with correlation filters for visual tracking, e.g. circulant structure, kernel trick, effective feature representation and context information. However, how to handle the scale variation and the model drift is still an open problem. In this paper, we propose a collaborative correlation tracker to deal with the above problems. Firstly, we extend the correlation tracking filter by embedding the scale factor into the kernelized matrix to handle the scale variation. Then a novel long-term CUR filter for detection is learnt efficiently with random sampling to alleviate model drift by detecting effective object candidates in the collaborative tracker. In this way, the proposed approach could estimate the object state accurately and handle the model drift problem effectively. Extensive experiments show the superiority of the proposed method.
 
会议录In proceedings of British Machine Computer Vision
源URL[http://ir.ia.ac.cn/handle/173211/11756]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
通讯作者Wang, Jinqiao
作者单位1.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.B-DAT & CICAEET, School of Information & Control, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China
推荐引用方式
GB/T 7714
Zhu, Guibo,Wang, Jinqiao,Wu, Yi,et al. Collaborative Correlation Tracking[C]. 见:. Swansea, UK. September 7-10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。