中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning A Superpixel-Driven Speed Function for Level Set Tracking

文献类型:期刊论文

作者Zhou, Xue1; Li, Xi2; Hu, Weiming3
刊名IEEE TRANSACTIONS ON CYBERNETICS
出版日期2016-07-01
卷号46期号:7页码:1498-1510
关键词Level Set Tracking Metric Learning Non-negative Matrix Factorization (Nf) Speed Function Superpixel (Sp)-driven
DOI10.1109/TCYB.2015.2451100
文献子类Article
英文摘要A key problem in level set tracking is to construct a discriminative speed function for effective contour evolution. In this paper, we propose a level set tracking method based on a discriminative speed function, which produces a superpixel-driven force for effective level set evolution. Based on kernel density estimation and metric learning, the speed function is capable of effectively encoding the discriminative information on object appearance within a feasible metric space. Furthermore, we introduce adaptive object shape modeling into the level set evolution process, which leads to the tracking robustness in complex scenarios. To ensure the efficiency of adaptive object shape modeling, we develop a simple but efficient weighted non-negative matrix factorization method that can online learn an object shape dictionary. Experimental results on a number of challenging video sequences demonstrate the effectiveness and robustness of the proposed tracking method.
WOS关键词GEODESIC ACTIVE CONTOURS ; IMAGE SEGMENTATION ; MATRIX FACTORIZATION ; VISUAL TRACKING ; OBJECT TRACKING ; SHAPE PRIORS
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000379757900002
资助机构National Natural Science Foundation of China(NSFC 61472063 ; 973 Basic Research Program of China(2014CB349303) ; Fundamental Research Funds for the Central Universities(ZYGX 2011J076) ; China Knowledge Centre for Engineering Sciences and Technology ; National Basic Research Program of China(2012CB316400) ; Zhejiang Provincial Engineering Center on Media Data Cloud Processing and Analysis ; NVIDIA CUDA Research Center Program ; Microsoft Research Asia Collaborative Research Program ; MOE-Microsoft Key Laboratory, Zhejiang University ; 61472353)
源URL[http://ir.ia.ac.cn/handle/173211/12153]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
作者单位1.Univ Elect Sci & Technol China, Dept Automat Engn, Chengdu 611731, Peoples R China
2.Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Xue,Li, Xi,Hu, Weiming. Learning A Superpixel-Driven Speed Function for Level Set Tracking[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(7):1498-1510.
APA Zhou, Xue,Li, Xi,&Hu, Weiming.(2016).Learning A Superpixel-Driven Speed Function for Level Set Tracking.IEEE TRANSACTIONS ON CYBERNETICS,46(7),1498-1510.
MLA Zhou, Xue,et al."Learning A Superpixel-Driven Speed Function for Level Set Tracking".IEEE TRANSACTIONS ON CYBERNETICS 46.7(2016):1498-1510.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。