中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multiple deep features learning for object retrieval in surveillance videos

文献类型:期刊论文

作者Guo, Haiyun; Wang, Jinqiao; Lu, Hanqing
刊名IET COMPUTER VISION
出版日期2016-02-26
卷号10期号:4页码:268-271
关键词Object Retrieval Multiple Deep Features Learning Convolutional Neural Network
DOI10.1049/iet-cvi.2015.0291
文献子类Article
英文摘要Efficient indexing and retrieving objects of interest from large-scale surveillance videos are a significant and challenging topic. In this study, the authors present an effective multiple deep features learning approach for object retrieval in surveillance videos. Based on the discriminative convolutional neural network (CNN), they can learn multiple deep features to comprehensively describe the visual object. To be specific, they utilise the CNN model pre-trained on ImageNet ILSVRC12 and fine-tuned on our dataset to abstract structure information. In addition, they train another CNN model supervised by 11 colour names to deliver the colour information. To improve the retrieval performance, the deep features are encoded into short binary codes by locality-sensitive hash and fused to fast retrieve the object of interest. Retrieval experiments are performed on a dataset of 100k objects extracted from multi-camera surveillance videos. Comparison results with other common visual features show the effectiveness of the proposed approach.
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000380260100005
资助机构863 Program(2014AA015104) ; National Natural Science Foundation of China(61273034 ; 61332016)
源URL[http://ir.ia.ac.cn/handle/173211/12168]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
通讯作者Wang, Jinqiao
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, 95 Zhongguancun East Rd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Guo, Haiyun,Wang, Jinqiao,Lu, Hanqing. Multiple deep features learning for object retrieval in surveillance videos[J]. IET COMPUTER VISION,2016,10(4):268-271.
APA Guo, Haiyun,Wang, Jinqiao,&Lu, Hanqing.(2016).Multiple deep features learning for object retrieval in surveillance videos.IET COMPUTER VISION,10(4),268-271.
MLA Guo, Haiyun,et al."Multiple deep features learning for object retrieval in surveillance videos".IET COMPUTER VISION 10.4(2016):268-271.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。