Multiple deep features learning for object retrieval in surveillance videos
文献类型:期刊论文
作者 | Guo, Haiyun![]() ![]() ![]() |
刊名 | IET COMPUTER VISION
![]() |
出版日期 | 2016-02-26 |
卷号 | 10期号:4页码:268-271 |
关键词 | Object Retrieval Multiple Deep Features Learning Convolutional Neural Network |
DOI | 10.1049/iet-cvi.2015.0291 |
文献子类 | Article |
英文摘要 | Efficient indexing and retrieving objects of interest from large-scale surveillance videos are a significant and challenging topic. In this study, the authors present an effective multiple deep features learning approach for object retrieval in surveillance videos. Based on the discriminative convolutional neural network (CNN), they can learn multiple deep features to comprehensively describe the visual object. To be specific, they utilise the CNN model pre-trained on ImageNet ILSVRC12 and fine-tuned on our dataset to abstract structure information. In addition, they train another CNN model supervised by 11 colour names to deliver the colour information. To improve the retrieval performance, the deep features are encoded into short binary codes by locality-sensitive hash and fused to fast retrieve the object of interest. Retrieval experiments are performed on a dataset of 100k objects extracted from multi-camera surveillance videos. Comparison results with other common visual features show the effectiveness of the proposed approach. |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000380260100005 |
资助机构 | 863 Program(2014AA015104) ; National Natural Science Foundation of China(61273034 ; 61332016) |
源URL | [http://ir.ia.ac.cn/handle/173211/12168] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_图像与视频分析团队 |
通讯作者 | Wang, Jinqiao |
作者单位 | Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, 95 Zhongguancun East Rd, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Guo, Haiyun,Wang, Jinqiao,Lu, Hanqing. Multiple deep features learning for object retrieval in surveillance videos[J]. IET COMPUTER VISION,2016,10(4):268-271. |
APA | Guo, Haiyun,Wang, Jinqiao,&Lu, Hanqing.(2016).Multiple deep features learning for object retrieval in surveillance videos.IET COMPUTER VISION,10(4),268-271. |
MLA | Guo, Haiyun,et al."Multiple deep features learning for object retrieval in surveillance videos".IET COMPUTER VISION 10.4(2016):268-271. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。