中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Web Image Mining Based on Modeling Concept-Sensitive Salient Regions

文献类型:会议论文

作者Jing Liu; Qingshan Liu; Jinqiao Wang; Hanqing Lu; Songde Ma
出版日期2006
会议日期July 9-12, 2006
会议地点Toronto, Ontario, Canada
关键词Gaussian Processes Data Mining Expectation-maximisation Algorithm Image Retrieval Search Engines Semantic Web Gaussian Mixture Model Web Image Mining Concept-sensitive Salient Region Model Exoexpectation-maximization Algorithm Image Retrieval Image Semantics Probabilistic Model Search Engine Bridges Detectors Html Humans Image Analysis Image Retrieval Image Segmentation Pixel Search Engines Skin
英文摘要In this paper, we propose a probabilistic model for Web image mining, which is based on concept-sensitive salient regions without human intervene. Our goal is to achieve a middle-level understanding of image semantics to bridge the semantic gap existing in the field of image mining and retrieval. With the help of a popular search engine, semantically relevant images are collected, and concept-sensitive salient regions are extracted automatically based on an attention model. Then the semantic concept model is learned from the joint distribution of all salient regions with Gaussian mixture model and expectation-maximization algorithm. In addition, by incorporating semantically irrelevant un-salient regions as negative samples, the discriminative power of the solution is further enhanced. Experiments demonstrate the encouraging performance of the proposed method
会议录Proceedings of the 2006 IEEE International Conference on Multimedia and Expo
源URL[http://ir.ia.ac.cn/handle/173211/13455]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
通讯作者Jing Liu
推荐引用方式
GB/T 7714
Jing Liu,Qingshan Liu,Jinqiao Wang,et al. Web Image Mining Based on Modeling Concept-Sensitive Salient Regions[C]. 见:. Toronto, Ontario, Canada. July 9-12, 2006.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。