Keyword spotting in handwritten chinese documents using semi-markov conditional random fields
文献类型:期刊论文
作者 | Zhang, Heng1![]() ![]() |
刊名 | ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
![]() |
出版日期 | 2017-02-01 |
卷号 | 58页码:49-61 |
关键词 | Online Handwritten Chinese Documents Semi-markov Conditional Random Fields Keyword Spotting Proxy-character Driven Search |
DOI | 10.1016/j.engappai.2016.11.006 |
文献子类 | Article |
英文摘要 | This paper proposes a document indexing method for keyword spotting based on semi-Markov conditional random fields (semi-CRFs), which provide a theoretical framework for fusing the information of different contexts. The candidate segmentation-recognition lattice is first augmented based on the linguistic context to improve recognition results. For fast retrieval and to save storage space, the lattice is then purged by a forward backward pruning procedure. In the reduced lattice, we estimate character similarity scores based on the semi-CRF model. The parameters of semi-CRF model are estimated using a binary classification objective, i.e., the cross-entropy (CE) to discriminate candidate characters in the lattice. To locate mis-recognized character instances in the lattice, we use confusing similar characters as proxies and search for proxy-characters in the index file. The proxy-character driven search can significantly improve the performance compared with our previous character-synchronous dynamic search (CSDS) method. Experimental results on the online handwriting database CASIA-OLHWDB justify the effectiveness of the proposed method. |
WOS关键词 | CONTINUOUS SPEECH RECOGNITION ; CHARACTER-RECOGNITION ; TEXT RECOGNITION ; ONLINE ; MODEL ; SEGMENTATION ; RETRIEVAL |
WOS研究方向 | Automation & Control Systems ; Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000392684200004 |
资助机构 | National Natural Science Foundation of China (NSFC)(61403385 ; 61273269) |
源URL | [http://ir.ia.ac.cn/handle/173211/14365] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Intelligent Media Tech Res Ctr, Chongqing 400714, Peoples R China 3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Heng,Zhou, Xiang-Dong,Liu, Cheng-Lin. Keyword spotting in handwritten chinese documents using semi-markov conditional random fields[J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,2017,58:49-61. |
APA | Zhang, Heng,Zhou, Xiang-Dong,&Liu, Cheng-Lin.(2017).Keyword spotting in handwritten chinese documents using semi-markov conditional random fields.ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,58,49-61. |
MLA | Zhang, Heng,et al."Keyword spotting in handwritten chinese documents using semi-markov conditional random fields".ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 58(2017):49-61. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。