中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Semantic Segmentation with Modified Deep Residual Networks

文献类型:会议论文

作者Chen, Xinze1,2; Chen, Guangliang1,2; Cai, Yinghao1; Wen, Dayong1; Li, Heping1
出版日期2016-10
会议日期November, 2016
会议地点Cheng Du, China
关键词Semantic Segmentation Data Augmentation Residual Networks Lstm Multi-scale Prediction
英文摘要A novel semantic segmentation method is proposed, which consists of the following three parts: (I) First, a simple yet effective data augmentation method is introduced without any extra GPU memory cost during training. (II) Second, a deeper residual network is constructed through three effective techniques: dilated convolution, LSTM network and multi-scale prediction. (III) Third, an online hard pixels mining is adopted to improve the segmentation performance. We combine these three parts to train an end-to-end network and achieve a new state-ofthe-art segmentation accuracy of 79.3% on PASCAL VOC 2012 test set at the time of submission.
会议录Proceedings of Chinese Conference on Pattern Recognition
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/14458]  
专题自动化研究所_模式识别国家重点实验室_机器人视觉团队
通讯作者Li, Heping
作者单位1.中国科学院自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
Chen, Xinze,Chen, Guangliang,Cai, Yinghao,et al. Semantic Segmentation with Modified Deep Residual Networks[C]. 见:. Cheng Du, China. November, 2016.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。