Semantic Segmentation with Modified Deep Residual Networks
文献类型:会议论文
作者 | Chen, Xinze1,2![]() ![]() ![]() ![]() |
出版日期 | 2016-10 |
会议日期 | November, 2016 |
会议地点 | Cheng Du, China |
关键词 | Semantic Segmentation Data Augmentation Residual Networks Lstm Multi-scale Prediction |
英文摘要 | A novel semantic segmentation method is proposed, which consists of the following three parts: (I) First, a simple yet effective data augmentation method is introduced without any extra GPU memory cost during training. (II) Second, a deeper residual network is constructed through three effective techniques: dilated convolution, LSTM network and multi-scale prediction. (III) Third, an online hard pixels mining is adopted to improve the segmentation performance. We combine these three parts to train an end-to-end network and achieve a new state-ofthe-art segmentation accuracy of 79.3% on PASCAL VOC 2012 test set at the time of submission. |
会议录 | Proceedings of Chinese Conference on Pattern Recognition
![]() |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/14458] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
通讯作者 | Li, Heping |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Chen, Xinze,Chen, Guangliang,Cai, Yinghao,et al. Semantic Segmentation with Modified Deep Residual Networks[C]. 见:. Cheng Du, China. November, 2016. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。