Heterogenous Graph Mining for Measuring the Impact of Research Institutions
文献类型:会议论文
作者 | Zeyu Qiu1,2![]() ![]() ![]() |
出版日期 | 2016-08 |
会议日期 | 2016-8 |
会议地点 | San Fancisco, California |
关键词 | Social Network Feature Engineering Model Selection Decision Tree |
英文摘要 | Mining influential nodes in a social network for identifying patterns or maximizing information diffusion has been an active research area with many practical applications. In the research community, influential institutions usually attract denser attention than others. Based on the prediction on how many papers will be accepted by some top conferences held in 2016, the KDD Cup 2016 hosts an international competition for evaluating the importance of academic institutions. This paper describes our solution to the competition. Specifically, the proposed scheme involved in the competition mainly comprises of feature engineering and application of decision tree models. Finally, as claimed by the competition organizer, our approach scored 0.6599, 0.8169, 0.7213 with NDCG@20 in phases 1-3, and resulted in 0.7472 in overall score. With the above scores, our team ranked the first place in phase 2 and fourth place in overall rank. |
源URL | [http://ir.ia.ac.cn/handle/173211/14560] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_图像与视频分析团队 |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.University of Chinese Academy of Sciences 3.Beijing Jiaotong University |
推荐引用方式 GB/T 7714 | Zeyu Qiu,Deqiang Kong,Zhenfeng Zhu,et al. Heterogenous Graph Mining for Measuring the Impact of Research Institutions[C]. 见:. San Fancisco, California. 2016-8. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。