中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Shoot to Know What: An Application of Deep Networks on Mobile Devices

文献类型:会议论文

作者Wu JX(吴家祥); Hu QH(胡庆浩); Leng C(冷聪); Cheng J(程健)
出版日期2016-02
会议日期2016-2
会议地点Phoenix, U.S.
英文摘要Convolutional neural networks (CNNs) have achieved impressive performance in a wide range of computer vision areas. However, the application on mobile devices remains intractable due to the high computation complexity. In this demo, we propose the Quantized CNN (Q-CNN), an efficient framework for CNN models, to fulfill efficient and accurate image classification on mobile devices. Our Q-CNN framework dramatically accelerates the computation and reduces the storage/memory consumption, so that mobile devices can independently run an ImageNet-scale CNN model. Experiments on the ILSVRC-12 dataset demonstrate 4 ∼ 6× speedup and 15 ∼ 20× compression, with merely one percentage drop in the classification accuracy. Based on the Q-CNN framework, even mobile devices can accurately classify images within one second.
源URL[http://ir.ia.ac.cn/handle/173211/14969]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Wu JX,Hu QH,Leng C,et al. Shoot to Know What: An Application of Deep Networks on Mobile Devices[C]. 见:. Phoenix, U.S.. 2016-2.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。