Parameter Identifiability in Statistical Machine Learning: A Review
文献类型:期刊论文
作者 | Ran, Zhi-Yong1; Hu, Bao-Gang2![]() |
刊名 | NEURAL COMPUTATION
![]() |
出版日期 | 2017-05-01 |
卷号 | 29期号:5页码:1151-1203 |
关键词 | Parameter Identifiability Statistical Machine Learning |
DOI | 10.1162/NECO_a_00947 |
文献子类 | Review |
英文摘要 | This review examines the relevance of parameter identifiability for statistical models used in machine learning. In addition to defining main concepts, we address several issues of identifiability closely related to machine learning, showing the advantages and disadvantages of state-of- the-art research and demonstrating recent progress. First, we review criteria for determining the parameter structure of models from the literature. This has three related issues: parameter identifiability, parameter redundancy, and reparameterization. Second, we review the deep influence of identifiability on various aspects of machine learning from theoretical and application viewpoints. In addition to illustrating the utility and influence of identifiability, we emphasize the interplay among identifiability theory, machine learning, mathematical statistics, information theory, optimization theory, information geometry, Riemann geometry, symbolic computation, Bayesian inference, algebraic geometry, and others. Finally, we present a new perspective together with the associated challenges. |
WOS关键词 | NATURAL GRADIENT DESCENT ; MULTILAYER NEURAL-NETWORKS ; SOFT COMMITTEE MACHINES ; INFORMATION CRITERION ; STRUCTURAL IDENTIFIABILITY ; COMPARTMENTAL-MODELS ; COMPUTER ALGEBRA ; LIKELIHOOD RATIO ; HIDDEN UNITS ; SINGULARITIES |
WOS研究方向 | Computer Science ; Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:000399679500001 |
资助机构 | NSFC(61273196 ; 61620106003) |
源URL | [http://ir.ia.ac.cn/handle/173211/15089] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 |
作者单位 | 1.Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China 2.Chinese Acad Sci, Inst Automat, NLPR & LIAMA, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Ran, Zhi-Yong,Hu, Bao-Gang. Parameter Identifiability in Statistical Machine Learning: A Review[J]. NEURAL COMPUTATION,2017,29(5):1151-1203. |
APA | Ran, Zhi-Yong,&Hu, Bao-Gang.(2017).Parameter Identifiability in Statistical Machine Learning: A Review.NEURAL COMPUTATION,29(5),1151-1203. |
MLA | Ran, Zhi-Yong,et al."Parameter Identifiability in Statistical Machine Learning: A Review".NEURAL COMPUTATION 29.5(2017):1151-1203. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。