中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-type attributes driven multi-camera person re-identification

文献类型:期刊论文

作者Chi Su1; Shiliang Zhang1; Junliang Xing2; Wen Gao1; Qi Tian3
刊名Pattern Recognition
出版日期2017
期号75页码:77-89
关键词Deep Attributes Person Re-identification
英文摘要One of the major challenges in person Re-Identification (ReID) is the inconsistent visual appearance of a person. Current works on visual feature and distance metric learning have achieved significant achievements, but still suffer from the limited robustness to pose variations, viewpoint changes, etc., and the high computational complexity. This makes person ReID among multiple cameras still challenging. This work is motivated to learn mid-level human attributes which are robust to visual appearance variations and could be used as efficient features for person matching. We propose a weakly supervised multi-type attribute learning framework which considers the contextual cues among attributes and progressively boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this framework involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted attributes, namely deep attributes exhibit promising generalization ability across different datasets. By directly using the deep attributes with simple Cosine distance, we have obtained competitive accuracy on four person ReID datasets. Experiments also show that a simple distance metric learning modular further boosts our method, making it outperform many recent works.
源URL[http://ir.ia.ac.cn/handle/173211/19750]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
作者单位1.National Engineering Laboratory for Video Technology, Peking University, Beijing, China
2.National Laboratory of Pattern Recognition, Insititue of Automation, Chinese Academy of Sciences
3.Department of Computer Science, University of Texas at San Antonio, San Antonio, USA
推荐引用方式
GB/T 7714
Chi Su,Shiliang Zhang,Junliang Xing,et al. Multi-type attributes driven multi-camera person re-identification[J]. Pattern Recognition,2017(75):77-89.
APA Chi Su,Shiliang Zhang,Junliang Xing,Wen Gao,&Qi Tian.(2017).Multi-type attributes driven multi-camera person re-identification.Pattern Recognition(75),77-89.
MLA Chi Su,et al."Multi-type attributes driven multi-camera person re-identification".Pattern Recognition .75(2017):77-89.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。