中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Beyond Mahalanobis Metric: Cayley-Klein Metric Learning

文献类型:会议论文

作者Bi, Yanhong; Fan, Bin; Wu, Fuchao
出版日期2015
会议日期2015
会议地点Boston, Massachusetts, USA
关键词Metric Learning Cayley-klein Metric
英文摘要
Cayley-Klein metric is a kind of non-Euclidean metric suitable for projective space. In this paper, we introduce it into the computer vision community as a powerful metric and an alternative to the widely studied Mahalanobis metric. We show that besides its good characteristic in non-Euclidean space, it is a generalization of Mahalanobis metric in some specific cases. Furthermore, as many Mahalanobis metric learning, we give two kinds of Cayley-Klein metric learning methods: MMC Cayley-Klein metric learning and LMNN Cayley-Klein metric learning. Experiments have shown the superiority of Cayley-Klein metric over Mahalanobis ones and the effectiveness of our Cayley-Klein metric learning methods.
语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/19822]  
专题自动化研究所_模式识别国家重点实验室_机器人视觉团队
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Bi, Yanhong,Fan, Bin,Wu, Fuchao. Beyond Mahalanobis Metric: Cayley-Klein Metric Learning[C]. 见:. Boston, Massachusetts, USA. 2015.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。