Beyond Mahalanobis Metric: Cayley-Klein Metric Learning
文献类型:会议论文
作者 | Bi, Yanhong![]() ![]() ![]() |
出版日期 | 2015 |
会议日期 | 2015 |
会议地点 | Boston, Massachusetts, USA |
关键词 | Metric Learning Cayley-klein Metric |
英文摘要 |
Cayley-Klein metric is a kind of non-Euclidean metric suitable for projective space. In this paper, we introduce it into the computer vision community as a powerful metric and an alternative to the widely studied Mahalanobis metric. We show that besides its good characteristic in non-Euclidean space, it is a generalization of Mahalanobis metric in some specific cases. Furthermore, as many Mahalanobis metric learning, we give two kinds of Cayley-Klein metric learning methods: MMC Cayley-Klein metric learning and LMNN Cayley-Klein metric learning. Experiments have shown the superiority of Cayley-Klein metric over Mahalanobis ones and the effectiveness of our Cayley-Klein metric learning methods. |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/19822] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
作者单位 | Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Bi, Yanhong,Fan, Bin,Wu, Fuchao. Beyond Mahalanobis Metric: Cayley-Klein Metric Learning[C]. 见:. Boston, Massachusetts, USA. 2015. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。