中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Radical-Based Chinese Character Recognition via Multi-Labeled Learning of Deep Residual Networks

文献类型:会议论文

作者Wang TQ(王铁强)1,2; Yin F(殷飞)1; Liu CL(刘成林)1,2; Cheng-Lin Liu
出版日期2017
会议日期November 13-15, 2017
会议地点Kyoto, Japan
关键词Chinese Character Recognition Radical Detection Deep Residual Network Multi-labeled Learning
页码579-584
英文摘要The digitization of Chinese historical documents poses a new challenge that in the huge set of character categories, majority of characters are not in common use now and have few samples for training the character classifiers. To settle this problem, we consider the radical-level composition of Chinese characters, and propose to detect position-dependent radicals using a deep residual network with multi-labeled learning. This enables the recognition of novel characters without training samples if the characters are composed of radicals appearing in training samples. In multi-labeled learning, each training character sample is labeled as positive for each radical it contains, such that after training, all the radicals appearing in the character can be detected. Experimental results on a large-category-set database of printed Chinese characters demonstrate that the proposed method can detect radicals accurately. Moreover, according to radical configurations, our model can credibly recognize novel characters as well as trained characters.
项目编号NSFC-61573355 ; NSFC-61633021
资助机构Osaka Prefecture University, Japan
会议录Proc. 14th Int. Conf. Document Analysis and Recognition
语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/19971]  
专题自动化研究所_模式识别国家重点实验室_模式分析与学习团队
通讯作者Cheng-Lin Liu
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Wang TQ,Yin F,Liu CL,et al. Radical-Based Chinese Character Recognition via Multi-Labeled Learning of Deep Residual Networks[C]. 见:. Kyoto, Japan. November 13-15, 2017.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。