中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning to recognition from Bing Clickture data

文献类型:会议论文

作者Li, Chenghua1,2; Song, Qiang1,2; Wang, Yuhang1,2; Song, Hang1; Kang, Qi4; Cheng, Jian1,2,3; Lu, Hanqing1,2
出版日期2016
会议日期2016.7.11-7.15
会议地点Seattle, USA
关键词Clickture Data Cnns Recognition
英文摘要MSR Image Recognition Challenge (IRC) 2016 tries to deal with designing a dog breeds recognition system based on Clickture-Dog dataset. To address the task, we proposed an effective method with systematic strategies as follows. We presented a data cleaning method using faster-rcnn to learn a dog detector. Besides, we ensembeled a series of CNN models to enhance the robustness. A dense evaluation strategy was carried out to boost the test accuracy. Finally, we achieved the first prize of this challenge with 89.65% top-5 accuracy. 
源URL[http://ir.ia.ac.cn/handle/173211/20139]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
作者单位1.Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences
3.Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences
4.Beijing Institute Of Technology
推荐引用方式
GB/T 7714
Li, Chenghua,Song, Qiang,Wang, Yuhang,et al. Learning to recognition from Bing Clickture data[C]. 见:. Seattle, USA. 2016.7.11-7.15.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。