中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unsupervised Cross-Dataset Transfer Learning for Person Re-identification

文献类型:会议论文

作者Peng PX(彭佩玺)1; Tao Xiang3; Wang YW(王耀威)4; Massimiliano Pontil2; Huang TJ(黄铁军)1; Tian YH(田永鸿)1
出版日期2016
会议日期2016 .07
会议地点Las Vegas, NV, USA
英文摘要Most existing person re-identification (Re-ID) approaches follow a supervised learning framework, in which a large number of labelled matching pairs are required for training. This severely limits their scalability in realworld applications. To overcome this limitation, we develop a novel cross-dataset transfer learning approach to learn a discriminative representation. It is unsupervised in the sense that the target dataset is completely unlabelled. Specifically, we present an multi-task dictionary learning method which is able to learn a dataset-shared but targetdata-biased representation. Experimental results on five benchmark datasets demonstrate that the method significantly outperforms the state-of-the-art.
源URL[http://ir.ia.ac.cn/handle/173211/20219]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
作者单位1.北京大学
2.University College London
3.Queen Mary, Univ. of London,
4.北京理工大学
推荐引用方式
GB/T 7714
Peng PX,Tao Xiang,Wang YW,et al. Unsupervised Cross-Dataset Transfer Learning for Person Re-identification[C]. 见:. Las Vegas, NV, USA. 2016 .07.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。