Unsupervised Cross-Dataset Transfer Learning for Person Re-identification
文献类型:会议论文
作者 | Peng PX(彭佩玺)1![]() |
出版日期 | 2016 |
会议日期 | 2016 .07 |
会议地点 | Las Vegas, NV, USA |
英文摘要 | Most existing person re-identification (Re-ID) approaches follow a supervised learning framework, in which a large number of labelled matching pairs are required for training. This severely limits their scalability in realworld applications. To overcome this limitation, we develop a novel cross-dataset transfer learning approach to learn a discriminative representation. It is unsupervised in the sense that the target dataset is completely unlabelled. Specifically, we present an multi-task dictionary learning method which is able to learn a dataset-shared but targetdata-biased representation. Experimental results on five benchmark datasets demonstrate that the method significantly outperforms the state-of-the-art. |
源URL | [http://ir.ia.ac.cn/handle/173211/20219] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
作者单位 | 1.北京大学 2.University College London 3.Queen Mary, Univ. of London, 4.北京理工大学 |
推荐引用方式 GB/T 7714 | Peng PX,Tao Xiang,Wang YW,et al. Unsupervised Cross-Dataset Transfer Learning for Person Re-identification[C]. 见:. Las Vegas, NV, USA. 2016 .07. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。