中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
STRUCTURED BINARY FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION

文献类型:会议论文

作者Zisha Zhong; Bin Fan; Jun Bai; Shiming Xiang; Chunhong Pan
出版日期2017
会议日期2017-9-17
会议地点Beijing, CHINA
英文摘要In this paper, we propose a novel structured binary feature extraction method for hyperspectral image classification. To pursuit high discriminative ability and low memory cost, we resort to applying the learning to hash technique to the traditional spectral-spatial hyperspectral features. We show how the structured information among different kinds of features
and different feature groups can be used to learn discriminative binary features for classification. Experiments on two standard benchmark hyperspectral data sets demonstrate the effectiveness of the proposed method.

源URL[http://ir.ia.ac.cn/handle/173211/20354]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
作者单位National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Zisha Zhong,Bin Fan,Jun Bai,et al. STRUCTURED BINARY FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION[C]. 见:. Beijing, CHINA. 2017-9-17.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。