In Defense of Locality-Sensitive Hashing
文献类型:期刊论文
作者 | Kun Ding![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE Transactions on Neural Networks and Learning Systems
![]() |
出版日期 | 2018-01 |
卷号 | 29期号:1页码:87-103 |
关键词 | Locality-sensitive Hashing (Lsh) Semantic Similarity Search Two-step Hashing |
英文摘要 | Hashing-based semantic similarity search is becoming increasingly important for building large-scale content-based retrieval system. The state-of-the-art supervised hashing techniques use flexible two-step strategy to learn hash functions. The first step learns binary codes for training data by solving binary optimization problems with millions of variables, thus usually requiring intensive computations. Despite simplicity and efficiency, locality-sensitive hashing (LSH) has never been recognized as a good way to generate such codes due to its poor performance in traditional approximate neighbor search. We claim in this paper that the true merit of LSH lies in transforming the semantic labels to obtain the binary codes, resulting in an effective and efficient two-step hashing framework. Specifically, we developed the locality-sensitive two-step hashing (LS-TSH) that generates the binary codes through LSH rather than any complex optimization technique. Theoretically, with proper assumption, LS-TSH is actually a useful LSH scheme, so that it preserves the label-based semantic similarity and possesses sublinear query complexity for hash lookup. Experimentally, LS-TSH could obtain comparable retrieval accuracy with state of the arts with two to three orders of magnitudes faster training speed. |
源URL | [http://ir.ia.ac.cn/handle/173211/20366] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 |
作者单位 | National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Kun Ding,Chunlei Huo,Bin Fan,et al. In Defense of Locality-Sensitive Hashing[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(1):87-103. |
APA | Kun Ding,Chunlei Huo,Bin Fan,Shiming Xiang,&Chunhong Pan.(2018).In Defense of Locality-Sensitive Hashing.IEEE Transactions on Neural Networks and Learning Systems,29(1),87-103. |
MLA | Kun Ding,et al."In Defense of Locality-Sensitive Hashing".IEEE Transactions on Neural Networks and Learning Systems 29.1(2018):87-103. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。