Blur-Kernel Bound Estimation From Pyramid Statistics
文献类型:期刊论文
作者 | Shaoguo Liu![]() ![]() |
刊名 | IEEE Transactions on Circuits and Systems for Video Technology
![]() |
出版日期 | 2016-05 |
卷号 | 26期号:5页码:1012 - 1016 |
关键词 | Blur-kernel Bound Estimation Image Deblur Motion Deblur Motion Prior Pyramid Statistics |
英文摘要 | This letter presents an approach for automatically estimating the spatial bound of the blur kernel in a motion-blurred image based on the statistics of multilevel image gradients. We observe that blur has a significant impact on the histogram of oriented gradients (HOGs) at higher levels of an image pyramid, but has much less of an impact at coarser levels. Based on this fact, we estimate the spatial bound of the unknown blur kernel using a learning-based approach. We first learn a generic pyramid HOG model from natural sharp images, then given an HOG pyramid of a blurry image, we predict the corresponding model of its latent sharp image. Finally, we learn another model to predict the spatial kernel bound from the difference between the observed and the predicted HOG pyramids. Experimental results show that the proposed method can estimate accurate blur kernel sizes, enabling existing blind deconvolution methods to achieve best possible results. |
源URL | [http://ir.ia.ac.cn/handle/173211/20367] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 |
作者单位 | National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Shaoguo Liu,Haibo Wang,Jue Wang,et al. Blur-Kernel Bound Estimation From Pyramid Statistics[J]. IEEE Transactions on Circuits and Systems for Video Technology,2016,26(5):1012 - 1016. |
APA | Shaoguo Liu,Haibo Wang,Jue Wang,&Chunhong Pan.(2016).Blur-Kernel Bound Estimation From Pyramid Statistics.IEEE Transactions on Circuits and Systems for Video Technology,26(5),1012 - 1016. |
MLA | Shaoguo Liu,et al."Blur-Kernel Bound Estimation From Pyramid Statistics".IEEE Transactions on Circuits and Systems for Video Technology 26.5(2016):1012 - 1016. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。