Global and Local Consistent Multi-view Subspace Clustering
文献类型:会议论文
作者 | Yanbo Fan2![]() ![]() ![]() |
出版日期 | 2015 |
会议日期 | 2015-11 |
会议地点 | Kuala Lumpur, Malaysia |
关键词 | Multi-view Subspace Clustering |
英文摘要 |
Multi-view clustering aims to cluster data with multiple sources of information. Comparing with single view clustering, it is challenging to make use of the extra information embedded in multiple views. This paper presents a multi-view subspace clustering method (MSC-GL) by simultaneously combining both the global low-rank constraint and local cross topology preserving constraints. The global constraint maximizes the correlation between representational matrices while encouraging each of them to be low rank. The local constraints enable representational matrices under different views to share local structure information. An efficiently iterative algorithm is developed to minimize the proposed joint learning problem, and extensive experiments on five multi-view benchmarks demonstrate that the proposed model outperforms the state-of-the-art multi-view clustering methods. |
源URL | [http://ir.ia.ac.cn/handle/173211/20913] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 |
作者单位 | 1.Center for Research on Intelligent Perception and Computing, CASIA 2.National Laboratory of Pattern Recognition, CASIA 3.Center for Excellence in Brain Science and Intelligence Technology, CAS |
推荐引用方式 GB/T 7714 | Yanbo Fan,Ran He,Baogang Hu. Global and Local Consistent Multi-view Subspace Clustering[C]. 见:. Kuala Lumpur, Malaysia. 2015-11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。