中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Image-to-Markup Generation via Paired Adversarial Learning

文献类型:会议论文

作者Jin-Wen Wu; Fei Yin; Yan-Ming Zhang; Xu-Yao Zhang; Cheng-Lin Liu
出版日期2018-09
会议日期10-14
会议地点Dublin, Ireland
英文摘要Motivated by the fact that humans can grasp semantic-invariant features shared by the same category while attention-based models focus mainly on discriminative features of each object, we propose a scalable paired adversarial learning (PAL) method for image-to-markup generation. PAL can incorporate the prior knowledge of standard templates to guide the attention-based model for discovering semantic-invariant features when the model pays attention to regions of interest. Furthermore, we also extend the convolutional attention mechanism to speed up the image-to-markup parsing process while achieving competitive performance compared with recurrent attention models. We evaluate the proposed method in the scenario of handwritten-image-to-LaTeX generation, i.e., converting handwritten mathematical expressions to LaTeX. Experimental results show that our method can significantly improve the generalization performance over standard attention-based encoder-decoder models.
源URL[http://ir.ia.ac.cn/handle/173211/22093]  
专题自动化研究所_模式识别国家重点实验室_模式分析与学习团队
作者单位NLPR, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Jin-Wen Wu,Fei Yin,Yan-Ming Zhang,et al. Image-to-Markup Generation via Paired Adversarial Learning[C]. 见:. Dublin, Ireland. 10-14.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。